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The object of this chapter is primarily to describe the class of non-linear, or
exponential, modulation schemes. However, we also consider the reasons
why these schemes are important, namely for use with non-linear systems
such as RF power amplifiers, and accordingly we also describe the effects of
these systems on linear modulation. This also leads to a study of methods
for the amelioration of non-linear effects in linear modulation, and a compar-
ison of linear and non-linear schemes. Since non-linear amplifiers are most
often used where power consumption is of primary concern, and particularly
in personal and cordless communication systems, the schemes described in
this chapter include those that are most important in a wide range of current
mobile and cordless radio standards, including GSM, DECT, the TETRA
private mobile (or business) radio (PMR) standard, the North American
standards IS-54 and IS-136 and PACS-UB [3.1, ch. 10], and many others.

3.1 The effect of non-linear systems

In most power-limited radio systems, the important issue is to optimize the
cfficiency of the RF power amplifier (commonly known as the 'high power
amplifier', or HPA). This is either to minimize overall power consumption in
a battery operated transmitter such as a mobile handset, or to make best use
of the investment made in the HPA. This latter is especially true of satellite
systems, where it is desirable to operate the HPA as near saturation as possible.

RF power amplifiers [3.2, 3.3] are classified according to the proportion of
the carrier cycle for which the output device conducts, which determines
both power efficiency and linearity. The most linear (and much the least
cfficient) are class A, in which the device conducts throughout the cycle. In
class B conduction is for nominally half the cycle, which is much more efficient,
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Figure 3.1 HPA classes (a) structure; (b) operating points

since it avoids large quiescent currents. ('Class AB' audio amplifiers usually
have two devices in the familiar 'push-pull' configuration, each of which
conducts for slightly more than half the time.) Class C denotes conduction
for less than half the cycle. Classes D and E use the output device only as a
switch. and as such may approach 100% efficiency. Figure 3.1(a) shows the
general structure of these circuits, while Fig. 3.1(b) shows the device character-
istics with the operating points or regions of the different configurations. Note
that even the most linear class A amplifier is subject to saturation around its
maximum output power.

The effect will be to distort the carrier sine wave, as shown in Fig. 3.2. Note
that the amplifier will in nearly all cases be followed by a band-pass filter, which
will pass only frequencies close to the fundamental. Thus the harmonic distor-
tion that results is not in itself a severe problem. However, it will result in an
amplitude-dependent phase and amplitude distortion, as shown in Fig. 3.3.
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Figure 3.2 Amplitude-phase distortion in non-linear HPA: waveforms
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Figure 3.3 Amplitude-phase distortion in non-linear HPA: amplitude-phase
characteristic

An amplitude-dependent phase delay due, for example, to the switching delay
of saturated semiconductor elements, will result in the amplitude-dependent
phase shift. For class B or higher, the characteristic will be more severe still,
similar to the grey line shown in Fig. 3.3, and will virtually preclude any opera-
tion in the linear part. Even for more linear amplifiers, however, Fig. 3.3 shows
that any amplitude variation on the input will result in unwanted modulation
of both amplitude and phase of the output. These effects are known as A M-
AM and AM  PM conversions. Note that if the input amplitude is constant
neither of these occurs, and there is effectively no distortion.
We may express the transfer function y(x) in polynomial notation:

y=ax+ By 4 ax (3.1)

Using the complex baseband representation of the modulated signal from
Equation (2.8):
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Of these terms, the first-order term (in «) is of course undistorted. The second
order (in ) has a term at twice the carrier frequency and another at baseband,
neither of which will be passed by the band-pass filter. The third-order term
contains a term at three times the carrier frequency, which will also be rejected,
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but it also contains another at the carrier frequency, which cannot be separated
from the modulated signal. Expanding this term:
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In general, the even-order terms in the transfer function will not generate inter-
fering products at the carrier frequency, while odd-order terms will. However,
in most cases it is the third-order term that will dominate. From Equation (3.3)
we note that if the amplitude A4() is constant, then there is no distortion, which
agrees with the conclusion reached from our discussion of Fig. 3.3.

We may often characterize the behaviour of a non-linear system in terms of
the third-order term, by considering the third-order intermodulation product
of two closely spaced sine wave signals within the pass-band. For example
two signals, one at w,. and another at w, + wy, generate an intermodulation
product at w. + 2wy. If the amplitude of the signal at w. is held constant,
while that at w.+ wy 1s increased, we will observe a linear increase in the
output term at w, + wy (dominated by the first-order term of the transfer func-
tion), while the term at w, + 2wy starts much smaller, but increases much more
rapidly. Figure 3.4 shows a logarithmic plot of both terms. At low amplitudes
(in the linear region of the characteristic), both plots are linear, although the
third-order term tends to be approximately twice as steep, showing that it
varies as the square of the input. At higher amplitudes both terms cease to
be linear, but if we extrapolate the linear portions of the plots, the point at
which they cross is called the third-order intercept (TOI) [3.3, p.52; 3.4,
p. 186], and gives a gauge of the non-linearity of the amplifier, which can
readily be measured in practice.
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then the resultant (neglecting all but the first- and third-order terms) is:
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Of these, the last three terms are out-of-band. and the first two are the terms at
the two input frequencies. The third is the third-order term of interest to us.
Observe that it varies with the square of the input amplitude a. The second
is the linear term in Fig. 3.4, whose magnitude is dominated by the term aa.
The third-order intercept thus occurs where:

3ay 4o

5 Ao =a= 3 (3.6)

where a is the relative amplitude of the second input signal.

A non-linear system also distorts the spectrum of a signal with time-varying
amplitude. In general. the effect on a signal that has been filtered to reduce its
bandwidth, for example by means of Nyquist filtering, is to regenerate the
sidelobes, which had been eliminated. The effect is called spectral regrowth.
Manipulating Equation (3.3) in the same way as (2.9), we obtain:

A(w) =3[Clw = we) + €' (—w+w,)]
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which shows that the output equivalent baseband spectrum is the convolution of
the input baseband spectrum with the spectrum of the squared magnitude of the
signal. Again, we note that if there is no amplitude variation, there is no distor-
tion, and no spectral regrowth. It also shows that the smaller the variation in
amplitude, the smaller the spectral regrowth, and therefore that it may be worth-
while minimizing amplitude variation, if constant amplitude is not feasible.

where

(3.7)

3.2 Linear modulation schemes for non-linear channels

In this section we describe techniques that may be applied to linear modu-
lation to improve its performance on a channel subject to some degree of



