S-72.3230 Radio transmission and network access Unchecked answers to the home works, might contain errors

Homework 1. Submit your solution at latest on 15th December, 2005

a) One example of choice of base functions

Signal vectors:

$$S_{1} = a \sqrt{\frac{T}{2}} \begin{bmatrix} 3\\1 \end{bmatrix} \quad S_{2} = a \sqrt{\frac{T}{2}} \begin{bmatrix} 3\\-1 \end{bmatrix} \quad S_{3} = a \sqrt{\frac{T}{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \quad S_{4} = a \sqrt{\frac{T}{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$
$$S_{5} = a \sqrt{\frac{T}{2}} \begin{bmatrix} -3\\1 \end{bmatrix} \quad S_{6} = a \sqrt{\frac{T}{2}} \begin{bmatrix} -3\\-1 \end{bmatrix} \quad S_{7} = a \sqrt{\frac{T}{2}} \begin{bmatrix} -1\\1 \end{bmatrix} \quad S_{8} = a \sqrt{\frac{T}{2}} \begin{bmatrix} -1\\-1 \end{bmatrix}$$

Constellation and decision areas:

b)
$$P_s = \frac{5}{2} Q \left(\sqrt{\frac{2\overline{E}_b}{N_o}} \right) - \frac{3}{2} Q^2 \left(\sqrt{\frac{2\overline{E}_b}{N_o}} \right)$$

c) 8.33 dB

Homework 2

Homework 3

- a) 9 bits and 28.43 bits
- b) 11.64 bits

Homework 4

- a) 2.96%
- b) 1.00 bit/s/Hz
- c) Δ SNR = 4.75 dB

Homework 5

- a) 2 times.
- b) 0 dB
- c) Comparing d/σ for the two constellations: 6.99 dB.

Homework 6

The bit error probability of differentially decoded BPSK in the AWGN-channel is $BEP = 0.5 \exp(-E/N_o) = 0.5 \exp(-\gamma)$.

a)
$$P_b = \frac{1}{2(1+\gamma_m)}$$

b) 10.98 dB and 27.68 dB

Homework 7

- a) 102 users .
- b) From 1.55 dB to 2.84 dB

Homework 8 a) 22.90 dB b) $\Delta SNR = 6.93$ dB

Homework 9.

The task is not fully clearly defined. Assuming that the user bit rate can be reduced with 10%, the power level reduction is 3.25 dB

Homework 10

- a) $P_{\text{packet}} = 0.1$
- b) 10 and 1053 bits