

Week	Lecture	Exercises	Computer exercises	Homework
3	L1 Introduction, stochasitc processes			
4	L2 M/G/1 queues	E1 Queuing theory		
4	L3 Conflic free access			
5	L4 Dynamic conflict free access	E2 Conflict free MAC		
5	L5 ALOHA			
6	L6 Random access in cellular	E3 ALOHA protocols		
6	L7 CSMA & IEEE802.11			Analytical work
7		E4 CSMA	C1 Computer #1	
7	L8 IEEE 802.11 and 11e			
8		E5 Backoff & Bursting	C2 Computer #2	Simulation work
8	L9 Collision resolution			
9		E6 Collision resolution	C3 Computer #3	
9	L10 IEEE 802.15.4			Homework deadlin
10				

Characteristics of packet traffic

• Consider an on-off traffic source model, where the on and off times follow different heavy-tailed probability density with infinite variance $(1 < \alpha < 2)$

 $\Pr\{T_{on} > x\} \sim c_{\alpha} x^{-\alpha}$ Pareto distribution

$$E\left\{T_{on}\right\} = \frac{1}{\mu} \quad E\left\{T_{off}\right\} = \frac{1}{\nu}$$

- During the on-period packets are emitted with rate h
- Average rate of the on-off source $\lambda = h\nu/(\nu + \mu)$.
- Aggregating many such on-off sources results in aggregate link traffic that exhibits self-similar scaling behavior.
- Even if λ < C, where C denotes the link capacity, the queue can blow up.

63

S-72.3235 Network Access

