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Contents & objectives
• The course aims at providing the students the 

fundamentals packet oriented wireless communication 
systems. 

• The focus is on the performance analysis of medium 
access control protocols MAC.

• Commonly utilized MAC protocols will be briefly 
reviewed and their performance discussed.
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Course material
• Book:

– R. Rom and M. Sidi, Multiple Access Protocols -
Performance and analysis, Springer-Verlag, 1989
http://www.comnet.technion.ac.il/rom/PDF/MAP.pdf

• Articles:
– G. Bianchi, "Performance Analysis of the IEEE 802.11 

Distributed Coordination Function," IEEE JOURNAL 
ON SELECTED AREAS IN COMMUNICATIONS, VOL. 
18, NO. 3, MARCH 2000
http://ieeexplore.ieee.org/iel5/49/18172/00840210.
pdf
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Tentative schedule

10

Homework deadlineL10 IEEE 802.15.4 9

C3 Computer #3E6 Collision resolution9

L9 Collision resolution 8

Simulation workC2 Computer #2E5 Backoff & Bursting8

L8 IEEE 802.11 and 11e7

C1 Computer #1E4 CSMA7

Analytical workL7 CSMA & IEEE802.116

E3 ALOHA protocolsL6 Random access in cellular6

L5 ALOHA5

E2 Conflict free MACL4 Dynamic conflict free access5

L3 Conflic free access4

E1 Queuing theoryL2 M/G/1 queues4

L1 Introduction, stochasitc processes3

Homework
Computer 
exercisesExercisesLectureWeek
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Homework
• There are two homework problems

– One paper and pencil type of problem
– One computer simulation problem

• Homework problems are not mandatory, but highly 
recommended.

• They can give up to 10 extra points to the exam
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Lecture 1.
• Introduction to medium access control
• Recapitulation of stochastic processes and queuing 

theory
• The Poisson process
• Traffic models

– Circuit switched
– Packet switched
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Medium access control
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Protocol architecture
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Transmitter

Receiver
Radio range

Medium access control
• Wireless transmission is broadcast

in nature. That is more than a single 
receiver can potentially receive 
every transmitted message.

• Transmissions over a broadcast 
channel interfere, in the sense that 
one transmission coinciding in time 
with another may cause none of 
them to be received. 

• The success of a transmission 
between a pair of nodes is not 
independent of other transmissions.

• To make a transmission successful 
interference must be avoided or at 
least controlled. 

• The channel is a shared resource 
whose allocation is critical for 
proper operation of the network. 

• The schemes used for channel 
access are known in literature as 
Multiple Access Protocols (MAC).

Reuse distance
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Medium access control protocols
• The task of the Medium Access Control (MAC) protocol 

is to divide the resources between the radio links such 
that
– Interference is avoided or kept at controlled level
– Utilization of the radio resources is maximized
– Quality of service QoS differentiation among the flow 

classes is achieved
– Fairness inside a QoS class is maintained
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Medium access control protocols
• The operation of the MAC protocol can be 

– Centralized such that single entity controls the 
resource division among the radio links leading to 
conflict free access

– Decentralized such that each link makes 
transmission decisions independently leading to 
contention based access

• Contention schemes differ in principle from conflict-free 
schemes 
– A transmitting user is not guaranteed to be 

successful. 
– The protocol must prescribe a way to resolve 

conflicts once they occur so that all messages are 
eventually transmitted successfully. 
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Conflict free access
• In conflict free protocols, the resource allocation can be

– Static - not dependent on the traffic or channel 
conditions (TDMA, FDMA, F/TDMA, OFDMA, CDMA, 
OFCDMA,…)

– Dynamic – based on demand and/or channel 
conditions
• Token passing
• Channel reservation (satellite systems, 

IEEE802.15.4,…)
• Dynamic scheduling (UMTS R99, WiMAX,…)
• Channel dependent “opportunistic” scheduling 

(e.g. CDMA2000 1xEV-DO/DV, HSDPA, LTE)
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Contention based access
• In contention based protocols, the conflicts caused by colliding

packets (interference) must be resolved. Conflict resolution 
methods can be divided into
– Static - the actual behavior is not influenced by the 

dynamics of the system. The transmission schedule for the 
interfering users can be

• Fixed: based on node IDs or priorities
• Probabilistic: schedule is chosen from a fixed 

distribution (p-persistent CSMA)
– Dynamic – the actual behavior of the system depends 

system dynamics.
• Transmission schedule could be determined by the time 

of the arrival
• Probabilistic: Transmission schedule depends on the 

number of colliding packets (BEB in IEEE802.3 and 
IEEE802.11)



8

S-72.3235 Network Access 15

Classification of MAC protocols
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Medium access control protocols
• The issues affecting the performance of the channel access

– Connectivity
• Can all the nodes hear each other or are there hidden terminals?
• What is the network topology? Single hop, multi-hop (mesh/ad hoc)

– Channel type
• What is the required Signal-to-Interference ratio for correct reception? Is there 

possibility for capture in case of collisions?
• Do protocol messages get lost due to fading?

– Synchronism
• Is the network synchronized, i.e. slotted or can transmissions start and end at 

arbitrary time instances.
– Feedback information

• Can collisions be detected? Can the colliding nodes be identified? 
• How much information can be shared among the nodes?
• Is correct reception acknowledged by the receiver?

– Traffic
• Is the message size fixed or does it vary? Is packets generated randomly or with 

steady rate? Can transmission buffers assumed to be saturated (TCP tends to 
saturate buffers) or are they likely to be empty at times?

– User population
• Is the number of users fixed or random? Can it be known by the system?

– Buffering capability
• How many packets can the nodes buffer? Will packets be lost due to buffer 

overflow?
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Other relevant courses
• Simulation tools

– S-38.3148 Network simulation 5 cr
• Mathematical tools

– S-38.3143 Queue Theory 5 cr
• Traffic modeling and performance analysis

– S-38.3141 Teletraffic theory 5 cr
• Conflict free access 

– S-72.3260 Radio Resource Management Methods 3 
cr

Stochastic processes 
and queuing theory
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Stochastic processes
• A stochastic process is a set of indexed random 

variables

• The index set         is called parameter space of the 
process

• Each individual random variable is a mapping from the 
sample space to set of real (or complex) numbers. 

• A parameterized set X(t) corresponding to a sample ω is 
called realization/trajectory/path of the process.

{ }( , ), ,X t t Tω ω∈ ∈Ω

t T∈

ω

t

realization
X(t,ω)
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Stochastic processes
• State-space of the process is a set of values that     may 

obtain.
• State space is discrete, if the number of states is finite 

or numerable. The corresponding stochastic process is 
called discrete time process/sequence/chain

• State space is continuous, if the number of states is 
innumerable. The corresponding stochastic process is 
called continuous time process/sequence/chain

( )X t

{ } { }0 1 2( ) , , , ,...kX t t t t t∈

( ), (0, ]X t t ∈ ∞
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Markov-processes
• Markov property: The state of the process at time    

depends only on its state at the previous time instance

• Markov-Process: The process stays in a state     random 
time interval after which it changes it state randomly 
according to certain state transition probabilities.

• Markov-Process has the Markov property, if the state 
time distribution of the process is memoryless. That is, 
transition is allowed to take place every time instant.
– Continuous time Markov-Process: State time 

distribution is exponential
– Discrete time Markov-Process: State time 

distribution is geometric

( ) ( ) ( ) ( ){ }
( ) ( ){ }
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Other related processes
• Semi-Markov process:  State time distribution can be 

arbitrary. At the instance of state transitions, the 
process behaves as Markov chain.
– Imbedded Markov-chain, Semi-Markov process 

observed at state transition times.
• Random walk/Process with independent increments: 

Location of a particle moving in space: Next 
position=Previous position + random variable

where X1,X2,… is a sequence of independent identically 
distributed random variables, n is the number of state 
transitions

1 0, 0n n nS S X S−= + =
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Other related processes
• Renewall/recurrent process: Related to the random 

walk, but instead of position, we interested in counting 
the number of transitions X(t) that take place as a 
function of time t. I.e. X(t) is a random variable that 
states the number of transitions that have taken place 
in time interval t.

Transition

X(t)

t

ξ(t)
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Classification of stochastic processes
• fτ(t) probability density function of time spent in a state
• pij transition probability
• qi state transition rate

Markov Process
fτ(t) memoryless
pij arbitrary

Semi Markov Process
fτ(t) arbitrary
pij arbitrary

Birth-death process
fτ(t) memoryless
pij =0 for |i-j|>1

Random walk
fτ(t) arbitrary
pij = qj-i

Renewal process
fτ(t) arbitrary
q1=1

Poisson
process
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Discrete-time Markov chains
• Definition: The sequence of random variables X1,X2,…

forms a discrete-time Markov chain if for all n 
(n=1,2,…) and all possible values of the random 
variables we have that

The state variable xn=i implies that the state of the 
system was Ei at time slot n.  

{ } { }1 1 1 1 1 1 1 1Pr , ,..., Prn n n n n n n n n nX x X x X x X x X x X x+ + − − + += = = = = = =
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Discrete-time Markov chains
• Markov chain is said to be homogenic (stationary), if 

state transition probabilities are independent of time 
index.

• For homogenic Markov chain, the state transition 
probability from state Ei: Xn=j to state Ej: Xn+1=i can be 
defined as:

{ }1Prij n np X j X i−= =

{ } { }1 1Pr Pr ,n n m m ijX j X i X j X i p m n+ += = = = = = ∀
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Discrete-time Markov chains
• Assume that the state space is independent of the time index 

n. Probability that the system is in state Ej at time instant 
n+m (Xm+n=j) conditioned that it was in state Ei at time m 
(Xn=i) is 

• If there exists an integer m0 such that pij
m0>0, the Markov 

chain is said to be irreducible.
• Let A denote the set of all states in a Markov chain.

– A subset A1⊂ A is said to be closed if no one-step 
transition is possible from any single state in Ai to its 
complement Ai

C=A\Ai. 
– If A1 consist of a single state Ej, the state is called 

absorbing state. If A1 is closed and does not contain any 
proper closed subsets, then A1 forms irreducible sub-
Markov chain.

{ }
0

Prn n m
ij m n m ik kj

k

p X j X i p p
∞

+
=

= = = ∑ Chapman-Kolmogorov
equation
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Discrete-time Markov chains
• The chain is irreducible if

• E_3 is absorbing state if

• E_2 and E_3 form an 
irreducible sub-Markov 
chain if

21 0p =
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Discrete-time Markov chains
• Probability that the chain returns to state Ei: 

• If        Markov chain is called recurrent; otherwise it is 
called transient.

• If the initial state is revisited in regular time intervals, 
the chain is said to be periodic; otherwise it is called 
aperiodic (non-periodic).

• Mean recurrence time of state Ei
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Discrete-time Markov chains
• Markov chain is Ergodic stochastic process if it is aperiodic, 

recurrent            and recurrent nonnull
• Probability that the system is in state Ei at time instant n

Theorem.  In irreducible, aperiodic, homogeneous Markov 
chain, the limit value

fulfills either
a) 
b)

for all i (for all states Ei) 

1if = iM < ∞

{ }( ) Prn
i nX iπ = =

( )lim n
i n iπ π→∞=

1 tai 0i i if M π< = ∞ ⇒ =

1,
1 1

i i

i j ji i
j ii

f M

p
M

π π π

= < ∞

= = =∑ ∑

State probability
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Discrete-time Markov chains
• If the number of states is finite, the state probabilities 

can be solved from the following set of linear equations

• Define

State probabilities are defined by the (left) Perron-
eigenvector of the state transition matrix P that fulfills 

( )
( )

1 ... m

ijp

π π=

=

=

π

P

π πP

Non-negative state transition probability

1i
i

π =∑

Row vector containing state probabilities

1
i j ji

ji

p
M

π π= = ∑

Equation for left eigenvalues of P

1i
i

π =∑
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Discrete-time Markov chains
• The state transition matrix P has the following 

properties
– P is a nonnegative matrix P≥0 
– The largest eigenvalue in modulus ρ(P) is equal to 1:

– The row and column sums of P are equal to 1

– If the chain is irreducible, then also P is an 
irreducible matrix, and the Perron eigenvector can be 
taken to be strictly positive 

( ) { }max 1

, 1

i i i

i i

ii

λ

ρ λ

λ

=

= =

∃ =

x x P

P

1, 1ji ji
j i

p p= =∑ ∑

0= ⇒ >π πP π
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Discrete-time Markov chains
• The state probability can be solved simply by using the 

power method for solving the Perron eigenvector

• Example
P=[.1 .1 .8;.3 .3 .4;.7 .2 .1];

Pi=rand(1,3);

I=ones(size(Pi));

for k=1:10

Pi(k+1,:)=Pi(k,:)*P/(Pi(k,:)*P*I');

end;

plot(0:10,Pi)
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Some useful tools

Characteristic function and moment generating 
function

Probability generating function
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Characteristic / moment generating function

• Moment generating function = Fourier-transformation of 
the probability density function

• Inverse Fourier-transform

• kth derivative of the characteristic function

• kth moment

( ) { }E ( ) , 1i X i xe e p x dx iω ωψ ω
∞

−∞

= = = −∫

( )1( )
2
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Laplace transform
• Consider random variable X with support [0,∞]. That is, 

X≥0
• The pdf of the variable is p(x) 
• Laplace-transform of the pdf

• Characteristic function

• kth moment

( ) { }* E ( )sX sxP s e e p x dx
∞

− −

−∞

= = ∫

( )*( )s P iψ ω=

{ } ( ) ( )
____

*
0lim 1 kk k

s k

dX E X P s
ds→= = −
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Probability generating function
• Discrete random variable

• Probability generating function = Z-transform of the 
probability

• Properties of G(z)
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Probability generating function
• First derivative yields expected value:

• 2nd derivative yields 2nd moment
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Probability generating function
• Let {Xi} be a set of independent identically distributed 

discrete random variables. Pr{Xi=k}=pk for all i.

• Let N be a discrete random variable independent of 
{Xi}. Pr{N=k}=qk
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Probability generating function
• Consider a random sum

• Probability generating function of SN:

• Wald's Lemma E{SN}=E{N}E{Xi}
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Poisson process
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Poisson Process
• Let us randomly place n dots (uniform distribution) on 

the interval  (0,T). What is the probability that there are  
k dots on the interval (t1,t2)?

T

t1 t2

k dots
( ){ } ( )1 2

2 1

Pr  dots on the interval , 1 n kkn
k t t p p

k
tp

T
t t t

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
Δ

=

Δ = −

Consider a limit

( ){ } ( ) ( )
1 2Pr  dots on the interval , 1

!

k
n kk tn t

k t t p p e
k k

λ λ− − Δ Δ⎛ ⎞
= − →⎜ ⎟

⎝ ⎠

, tn T np n t
T

λΔ
→ ∞ → ∞ = → Δ

Poisson Theorem
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Poisson Process
• If     is small, then

• That is,

• Events that there are k dots on interval (t1,t2) and 
(t3,t4), t1<t2<t3<t4 are independent of each other

• Poisson Process:

{ }
0

Pr Only one dot on the interval 
lim t

t
t

λΔ →

Δ
=

Δ

{ }Pr Only one dot on the interval tt te tλλ λ− ΔΔ = Δ ≈ Δ
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Poisson process
• Poisson process can be utilized to model arrivals from 

independent sources
– Call arrivals in voice telephony
– Packet session arrivals in data networks
– Handovers from neighboring cells (approximately)

• Poisson model, in general, is not valid for modeling 
arrivals from single or correlated sources, such as
– Packets generated by single computer during a 

packet session 
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Circuit switched voice traffic
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Call arrival process
• Call arrival process: 

– T →∞ denotes the time interval from the big bang till 
the end of time

– n denotes the total number of calls that arrive on 
time interval T.

• Probability that k calls arrive during the time interval of 
length Δt

{ }Pr Only one call arrives during t tλΔ ≈ Δ

{ } ( )Pr  calls arrive during 
!

k
t t

k t e
k

λ λ− Δ Δ
Δ = (Poisson Process)

when Δt is very small
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Call arrival process
• Example: Number of arrivals per time slot
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Call arrival process
• Inter-arrival time Τ of calls

• Expected inter-arrival time

{ }
0 0

1 1t xE T te dt xe dxλλ
λ λ

∞ ∞
− −= = =∫ ∫

{ } { }
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Inter-arrival time Τ

Call arrival
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Call arrival process
• Let T denote the interarrival time
• Probability that next call arrives in time t 

• Given that new call has not arrived in time t, the 
probability that it will arrive in time t+Δt is given by

which is independent of t! 
Hence, the arrival process is memoryless. 
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Call departures
• Also call departures can be modeled with Poisson 

process
• Mean call holding time τ follows then exponential 

distribution

• Mean call holding time

• Probability that a call in progress ends during a time 
interval Δt:

( )p e μττ μ −=

{ }
0

1E e dμττ τμ τ
μ

∞
−= =∫

{ }Pr Call ends during tt te tμμ μ− ΔΔ = Δ ≈ Δ
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Call arrivals and departures
• Call arrivals per time unit

• Call departures per time unit

• Call arrivals and departures constitute a continuous 
time birth-death process.

{ }
0

Pr Only one call arrive during 
lim t

t
t

λΔ →

Δ
=

Δ
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lim t

t
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Δ
=

Δ
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Call arrivals and departures
• Steady state probabilities of continuous Markov chain 

could be derived using discrete time Markov chain 
where the time interval Δt is small

• State probability of a birth dead call arrival-departure 
process

( ) 1 11i i i iπ λ μ π λπ μπ− += − − + −

Probability that the system is in state i and no call arrives or
departs 

Probability that system is in state i-1 and one
call arrives

Probability that the system is in 
State i+1 and a call departs

1i
i

π =∑
Probability that the system is one of its possible states
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Call arrivals and departures
• The steady state probabilities are the same as in the 

discrete time birth-death process
– State probabilities

– Number of calls in progress

0

0 1

k

k
λπ π
μ

λπ
μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

0 1
k

k

N k

λ
λμπ λ μ λ

μ

∞

=

= = =
−−

∑

Packet switched traffic
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Packet switched traffic
• Non-real-time services

– SMS, WWW, FTP, Email,...
• Traffic model

Packet session

Reading timePacket
call

Pacet size
Packet
Interarrival time 

Three layered stochastic processes
•Session arrival process
•Packet call arrival process
•Packet arrival process
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Packet switched traffic
• Commonly utilized models

– Packet session interarrival: Exponential/geometric 
– Number of arriving packet sessions: Poisson
– Reading time distribution: Exponential/geometric
– Packet interarrival time: Exponential/geometric or 

log-normal
– Packet length: Fixed
– Length of the packet session: Parento distributed



29

S-72.3235 Network Access 57

Characteristics of packet traffic
• Empirical studies of different data networks indicate that 

Packet traffic exhibits extended temporal correlations, i.e., 
long-range dependence (LRD), and hence when viewed 
within some range of (sufficiently large) time scales, the 
traffic appears to be fractal-like or self-similar, in the sense 
that a segment of the traffic measured at some time scale 
looks or behaves just like an appropriately scaled version of 
the traffic measured over a different time scale

Empirical results:
Ethernet (LAN):
W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the Self-Similar Nature of Ethernet Traffic
(Extended Version), IEEE/ACM Transactions on Networking, Volume: 2, Issue: 1, February 1994.

Internet traffic:
V. Paxson and S. Floyd, "Wide Area Traffic: The Failure of Poisson Modeling," IEEE/ACM Transactions
on Networking, Volume: 3, Issue: 3, June 1995, Pages:226 – 244

Recent overview:
A. Erramilli, M. Roughan, D. Veitch, D. and W. Willinger, "Self-similar traffic 
and network dynamics," Proceedings of the IEEE , Volume: 90 , Issue: 5 , May 2002 
Pages:800 - 819
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Characteristics of packet traffic
• The self-similar behavior of data traffic is caused by the high-

variability of the of individual sessions that make up the 
aggregate traffic.

• Self-similar scaling behavior over sufficiently large time scales 
can be observed, if the durations (in time) or sizes (in bytes) 
of the individual sessions or IP flows that generate the 
aggregate traffic have a heavy-tailed distribution with infinite 
variance (that is, range from extremely short/small to 
extremely long/large with non-negligible probability).

• The LRD nature of network traffic is mainly caused by 
user/application characteristics such as Poisson arrivals of 
sessions and heavy-tailed distributions for the session 
durations/sizes, and has little to do with the network, i.e., 
with the protocol-specific mechanisms that determine the 
actual flow of packets as they traverse the Internet.

=> Self-similarity and LRD cannot be avoided by changing the 
protocols.
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Characteristics of packet traffic
• Let X(t) denote stationary traffic rate process

– Mean, variance, and auto-covariance:

– The process is said to exhibit (asymptotically) long-
range dependencies (LRD) if

otherwise if

it is said to exhibit short-range dependencies (SDR).

{ }
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( )( ){ }
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( ) ~ , 0, 0 1Xc k c k cβ
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Xc k φ φ <

~ denotes 'asymptotically'
That is, the ratio of the two
sides tends to one in the 
limit of large k
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Characteristics of packet traffic
• Consider a mean estimator

• This process has stationary increments, and 

if held exactly, implies that the process is self-similar.
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Characteristics of packet traffic
• Let Y(n) denote the number of bytes arrived during the 

interval (0,n)

• It follows that 

have the same distribution.
H denotes the Hurst parameter. 

1

( ) ( )
n

k

Y n X k
=

= ∑

( ) ~ ( )
d

HY t a Y at

S-72.3235 Network Access 62

Characteristics of packet traffic
• The unique continuous Gaussian process with LRD 

characteristics and with stationary increments is the 
well-known fractional Brownian motion (fBm)

• Data traffic can be modeled with fBm H∈(1/2,1)
• Traffic model

W(t) is fBm process with zero mean and Hurst 
parameter H.

• Multiplexing independent flows have the effect of 
reducing σY which in turn reduces the temporal 
burstiness.

( ) ( )Y YY t t W tμ σ= +

I. Norros, "On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks," 
IEEE Journal on Selected Areas in Communications, Volume: 13, Issue: 6, August 1995, Pages: 953 – 962. 
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Characteristics of packet traffic
• Consider an on-off traffic source model, where the on 

and off times follow different heavy-tailed probability 
density with infinite variance (1<α<2)

• During the on-period packets are emitted with rate h
• Average rate of the on-off source λ=hν/(ν+μ).
• Aggregating many such on–off sources results in 

aggregate link traffic that exhibits self-similar scaling 
behavior.

• Even if λ < C, where C denotes the link capacity, the 
queue can blow up.

{ }Pr ~onT x c x α
α

−>

{ } { }1 1
on offE T E T

μ υ
= =

Pareto distribution
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Characteristics of packet traffic
• Buffer state

– Average rate of the on-off source λ=hν/(ν+μ)<C
– However, due to the large variance, there is no 

upper bound for how long the on-period takes.

Ch
…
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Characteristics of packet traffic
• Self-similarity concerns large time scales and leaves the 

small scale behavior, such as strong short term 
correlation of the arrivals, unspecified.

• TCP uses feedback to react to network congestion. 
• Because TCP feedback modifies the self-similarity in the 

offered traffic, “open loop” modeling approaches will not 
accurately predict TCP performance. 

• Chaotic maps have been suggest to model the complex 
the source behavior (A. Erramilli, et. al. 2002).

• TCP tends to saturate the bottleneck links. Since 
wireless links usually are the bottlenecks, saturated 
traffic conditions where each transmitter is always 
assumed to have packet ready for transmission is 
commonly utilized to analyze the performance of MAC 
schemes in wireless systems.


