
1

Lecture 10 Collision resolution

29.2.2008 2

Collision resolution
• Many applications involve an inquiry over a shared

channel, which can be invoked for: discovery of
neighboring devices in ad hoc networks, counting the
number of RFID tags that have a certain property,
estimating the mean value contained in a group of
sensors etc. Such an inquiry solicits replies from
possibly large number of terminals n. This necessitates
the usage of algorithms for resolving batch collisions
(conflicts) with unknown conflict multiplicity n.

2

29.2.2008 3

Collision resolution
• Collision Resolution Protocols (CRP) aim at resolving

collisions as soon as they occur.
• In most versions of these protocols, new packets that

arrive to the system are inhibited from being
transmitted while the resolution of collisions is in
progress.

• This ensures that if the rate of arrival of new packets to
the system is smaller than the rate at which collisions
can be resolved (the maximal rate of departing
packets), then the system is stable.

• The basic idea behind these protocols is to exploit in a
more sophisticated manner the feedback information
that is available to the users in order to control the
retransmission process, so that collisions are resolved
more efficiently and without chaotic events.

29.2.2008 4

Binary tree CRP
• Basic Binary tree CRP

– When a collision occurs, in slot k say, all users that are not
involved in the collision wait until the collision is resolved.

– The users involved in the collision split randomly into two subsets,
by (for instance) each flipping a coin.

– The users in the first subset, those that flipped 0, retransmit in
slot k+1 while those that flipped 1 wait until all those that flipped
0 transmit successfully their packets.

– If slot k+1 is either idle or contains a successful transmission, the
users of the second subset (those that flipped 1) retransmit in slot
k+2.

– If slot k+1 contains another collision, then the procedure is
repeated, i.e., the users whose packets collided in slot k+1 (the
“colliding users”) flip a coin again and operate according to the
outcome of the coin flipping, and so on.

3

29.2.2008 5

Binary tree protocol

• Let denote the length of the CRI when n packets
collided and let

• The fraction n/Bn is the effective service rate for the of
packets.

• It can be shown that under Poisson arrival of rates as
long as λ < n/Bn the system is stable

nB

{ }n nB E B=

29.2.2008 6

Binary tree protocol
• Bn is minimized by utilizing balanced “coin” that is the 0

and 1 should be selected with equal probability.
• It can be shown that
• Hence, the maximum throughput of the protocol is

and the maximum delay is

1, 2.886nB nα α≤ + ≈

10.346
n

n e
B

λ −≤ ≈ <

()

2

2

1 1
1

D α λ αλ
αλ
+ −

≤ +
−

4

29.2.2008 7

Modified Binary tree protocol
• The binary tree algorithm can be improved by noting that

empty slot is always followed by collision.
• This could be avoided by automatically splitting the users

after empty slots.

29.2.2008 8

Modified Binary tree protocol
• In case of modified Binary tree protocol, we have

shorter Bn and thus larger arrival rate can be supported.

This actually exceed the best that could be achieved
with ALOHA.

2.664α ≈

10.375
n

n e
B

λ −≤ ≈ >

5

29.2.2008 9

Epoch mechanism
• The collision resolution interval in binary tree protocol is

long if the number of colliding packets is long.
• After one CRI, the packets that arrived during that

period will collide. Since the period was long, also the
number of colliding packets is expected to be large.

• To reduce the number of colliding packets, the arrivals
during the CRI could be divided into epocs. The epocs
would then be served in consecutive manner.

29.2.2008 10

Interval-Splitting epoch mechanism
• First all users that arrived during (a,g) will transmit.
• If there is collision, instead of flipping a coin, the

interval is split and users that arrived on (a,d) will be
served. If there is further collision, we split the interval
into (a,b) and (b,d) etc.

