Dynamic Channel Allocation

- The network load fluctuates
 - Channel conditions vary
 - Number of active terminals changes
 - Interference level changes
- Design margins have to be added for guaranteeing low interference ratio
 - Low number of channels in each cell
 - Fixed Channel allocation leads to low utilization
 - problem severe when there are few channels per BS
- The margins are needed since the knowledge of the load at every time moment is limited
- With more sophisticated interference prediction tools better allocation possible
 - Preliminary measurements
 - Interference estimation based on particular terrain
- The allocation still based on average traffic load and average propagation conditions

Dynamic Channel Allocation

- Channel allocation based on real time measurements
 - All the channels in a common pool
 - Channels allocated based on the situation in the network
- Teletraffic point of view
- FCA operates as a set of small servers
- DCA as a big pool of servers

Classification of DCA algorithms

- Fix FCA
- Inf-opt optimal usage of information
- Corners use knowledge:
 - MP number of active users in every cell
 - Reuse power level of users
 - Interference (background noise) measurements

- Centralized DCA
 - Needed for estimating the optimal values that are used for comparing performance of practical algorithms
 - Uses global knowledge for allocating resources in the whole network
 - Impractical due to the high signaling demand and algorithm complexity
- Distributed DCA
 - Relies on the locally available information

Comparison FCA versus DCA

- FCA Blocking rate similar to dropping rate during handovers
 - DCA has higher call blocking at medium and high load in the network
- FCA Forced call termination
 - DCA the same channel can be reused in the next cell
- DCA requires for each BS to be able to transmit at all possible channels

Traffic adaptive channel allocation

- The channels are allocated in accordance to the current (measured) cell loading
- Channels are not allocated in advance but based on the measurements
- Interference analysis methods are similar to the ones in FCA
- Worst-case design
 - The propagation conditions are described and estimated based on the cells compatibility

Cell compatibility

- I the compatibility matrix
- channels based on compatibility is very complex

Maximum Packing (MP) scheme

- New call is blocked only if there is no possible channel allocation (no possible combination of allocated channels).
- MP calculates the minimum number of channels for serving instantaneous demand while satisfying compatibility constraint.
- MP can be interpreted as A graph coloring scheme
 - Maximize the number of colors each cell can have such that the neighboring cells do not have same colors
- Optimum algorithm is NP-complete
 - No good algorithm exist

Reuse Partitioning

- Pure traffic adaptive scheme assumes worst-case propagation situation
- RP adapts to the propagation conditions
- Instead of using single cell plan several overlapped cells with different reuse distances are used.
 - Terminals close to BS select the channel from the set with short reuse distance
 - Terminals close to the cell border select channel with large reuse distance
- If the frequency is used only near to the BS the reuse distance can be reduced

• Cell is split into L areas – K_l cluster sizes

 $K_1 < K_2 < ... < K_L$

- A cell plan with K_i has to be used for terminals up to the distance r from the cell center.
- A cell plan with K_i channel groups has reuse distance $D_i = R\sqrt{3K_i}$
- The signal power is $\Gamma^{u}(r) = \frac{D^{4}}{7r^{4}} = \frac{9R^{4}}{7r^{4}}K_{i}^{2}$

• The cell plan K_i can use with all terminals up to distance $r < R \left(\frac{9}{7\gamma}\right)^{1/4} \sqrt{K_i} = r_i$

- Capacity allocation vector
- Total number of channels limits the choice of the allocation vector
- The total number of channels available in the cell

Summary of RP

- RP is splitting the cell pattern into smaller areas
- Only terminals near to BS can use all the channels
- The average number of channels available to the terminal is increased
- Number of terminals competing for particular set of channels is decreased, that increase relative traffic variation
- Good performance at high traffic load
 - Lower assignment failure than in FCA
- For low traffic load the traffic variation and the performance of RP DCA is worse than FCA
- Good performance requires RP combination with traffic adaptive scheme
 - Channels should be possible to be borrowed from other zones

Optimal RP algorithm [Zander and Frodigh]

 M_i describes the number of active terminals in zone i

- Assign $min(M_1, c_1)$ channels from the cell plan 1 to terminals in zone 1. $Z_1 = max(0, M_1 c_1)$
- Assign $min(M_i+Z_{i-1},c_i)$ channels from the plan *i* to terminals in zone *i* or zones with lower index.

 $Z_i = max(0, M_i + Z_{i-1} - c_i)$

• Assign $min(M_L + Z_{L-1}, c_L)$ channels from the plan L to terminals in zone L.

 $Z = Z_{L} = max(0, M_{L} + Z_{L-1} - c_{L})$

- The vector Z_i describes how many channels have to be borrowed from zones with higher index
- The total number of assignment failures is the demand for additional channels in last zone Z_L

• Figure 7.7

Interference-based DCA schemes

- Traffic adaptive RP based on conservative estimates of propagation and interference
- Not knowing the attenuation powers α requires reservation of larger interference margins
- It is better to use actual measured interference levels not the averaged estimates.
- Measurement based approach is implemented in real life systems

Measurement based scheme

- The SIR is continuously compared with the threshold
- If the SIR is below the threshold a new channel is searched for
- The algorithms becomes very sensitive for the threshold level and can change channels very often

Orthogonal frequency hopping

Random channel allocation

- Frequency hopping (FH) intends to introduce frequency diversity
- Can also be used for protecting against interference
 - Very effective in combination with error correction schemes
- Orthogonal frequency hopping can also be interpreted as a channel allocation scheme
 - Channel allocation is changed accordingly to hopping sequence

- Connection between assignment failure rate and the interference rate
 - Tradeoff between the number of available channels and interference level
- The lack of channels worse issue than decreased quality
 - To reduce blocking probability increase the amount of channels per BS (reduce reuse distance)
 - For avoiding interference
 - Better coding schemes
 - Better modulation schemes

Typical interference environment

- The outage rate is the same
- Fast moving users (B)
 - Outage is distributed among the users.
 - If the user moves fast enough the bad channel state can be corrected by error correction coding.

- The diversity better for higher mobile speed
- The mobility of the terminals can not be controlled
- Mobility can be mimicked -> change frequencies

 Random channel allocation
- Interference is different at different frequencies
- By changing the channels the average outage probability is not impacted
 - Average outage probability probability that a randomly selected terminal is in outage
- The frequency hopping itself does not improve the performance of the system
- The interference situation becomes easier to handle
 - The severe interference environment last shorter time
 - Lost bits can be corrected by error correction

• Purpose of changing channels among the users is to distribute the channel conditions among the users

- At each channel different interference condition

- In narrowband FDMA changing channels corresponds to a frequency hopping system
 – Good in frequency selective channel
- Any permutation of the orthogonal waveforms have the same property
 - Permutation of timeslots in TDMA
 - Permutation of spreading codes in CDMA

- Can be used with static channel allocation
- Channels collected into groups.
- The time interval when the terminal uses some particular channel is called *chip*
- All the terminals change the channels synchronously at the same time.
 - Helps to maintain orthogonality among the users in the same cell
- The hop rate can not be very high
 - Difficult to maintain synchronism between the terminal and BS
 - Slow frequency hopping

- The data is spread over multiple blocks *L*
- Each block has n_b coded bits
- The blocks are transmitted in different frequencies
- Each block can be lost due to the bad channel
- If outage probability is χ in average χL blocks are in fades.
- Error correction should be able to correct at least all the bits in χL blocks.

Example

- A mobile system has C=100 channels (without coding). Coding rate is r =2/3. The block is correctly decoded when SIR > 9 dB
- The code is capable to detect all erroneous blocks with negligible amount of error detection bits.
- The channels are assigned randomly and interference among the users in the same cell is avoided.
- The propagation is distance dependent

α=4

- Log-normal fading $\sigma = 8 \text{ dB}$
- Estimate the capacity of the uplink and compare it with the static channel allocation with assignment failure better than 5%

• The C/I for some random terminal *i* in access port *j*

$$\Gamma_i = \frac{P_0}{\sum_k X_k P_k G_{kj} + N_0}$$

 X_k is the binary activity vector P_0 is the power control target at the receiver

- C/I can be assumed to be independent from *i* same for all the terminals
- The total outage rate can be simulated as a function of load
- The coded system has C r = 67 channels available

• Figure 8.3

• Table 8.1

- The frequency hopping system works best with low system load and high number of channels
- The system becomes interference limited
- In downlink the interference in next timeslot is difficult to estimate
 - Due to the hopping in each next interval interference generated from different set of users – no correlation

Slow frequency hopping

- The frequency hopping needs large code words.
- The number of blocs should be large
 - Easy to construct codes that can correct certain number of errors distributed randomly
 - Handled by interleavers
- The delay becomes a problem
 If hop sequence is *f_c* frequencies *L/f_c*
- Tradeoff between the error control performance and delay.

FH in GSM

- One hop 4.615 ms -> 217 hops/s
- Hopping sequence of length 64 are specified
- If there are Q frequencies -> total 64Q sequences can be defined
- The hopping sequence is identified by two number
 - MAIO mobile allocation index offset
 - HSN hopping sequence number (one of 64 sequences)
 - HSN=0 cyclic hopping all the terminals have the same hopping pattern – same interference
- The speech coding scheme is theoretically capable to correct half of the frames.

- Speech coding is spread over 8 half bursts (57 bits)
- The code rate is 0.5
- Code can correct 2 bursts out of 8

FH performance in GSM

• Figure 8.5 – 8.7

Performance of the GSM frequency hopping system as a function of the number of frequencies