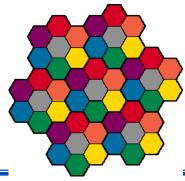


TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Cellular Network Planning andOptimization Part I:Introduction

JyriHämäläinen, Communications andNetworking Department, TKK,17.1.2007

Outline


- Preliminaries
- Selectionoftechnologyexamples
- Spectrum
- Wayforward

Preliminaries

- Bandwidthisascarceresourcewhichneedsto bedivideamongtheusers
- Inpracticeallmultipleaccessschemes introduceco-channelinterferencewhichlimits thespatialreuseoftheresources.
- Cellularradioconcept(BellLabs, 1943)
 - Serviceareaofsinglebasestationisdenotedasa cell

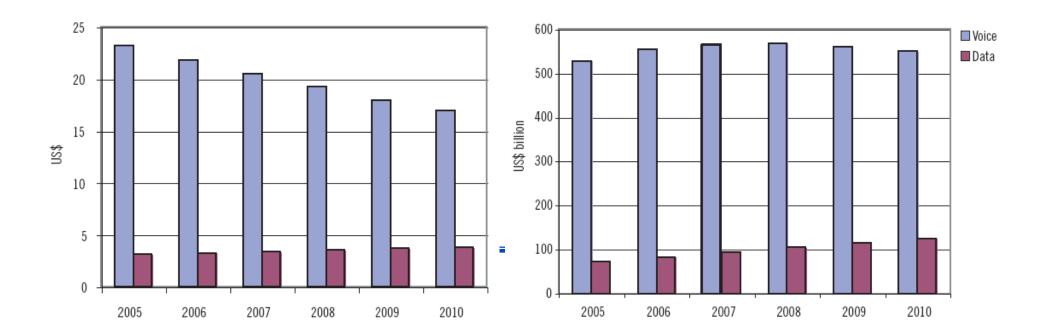
Samefrequencycanbereusedin spatiallyseparatescells FDMA/TDMA Objectivesofradionetworkplanning

- 1) Toobtainsufficient *coverage* overtheentire serviceareatoensurethathighqualityvoice servicesanddataserviceswithlowerrorrates canbeofferedtothesubscribers.
- 2) Toofferthesubscribertraffic *network capacity* withsufficientlylow *blocking* andcall *dropping* rate.
- 3) Toenablean economicalnetwork implementation when the service is established and a controlled network expansion during the lifecycle of the network

Networkplanningfromoperatorperspective

- Foranoperatorgoodnetworkplanning=
 - Lessmoneyspendtoinfrastructure
 - Moresatisfiedcustomers(goodservicequality)
 - Lessneedforadjustments
- Foranoperatornetworkoptimization=
 - Betterreturnforinvestment
 - □ Lessneedforcostlyhardwareupdates
 - Lessneedfornewsites(whichareveryexpensive)

- Spectrumandnetworkarevaluableassetsfor cellularoperators
 - Recallthattherearealsovirtualoperatorsi.e.
 operatorsthatneitherhavespectrumnornetwork
- Howdoyouselectyouroperator?
 - Priceisusuallythedriver
 - Connectivityisanissueonlyinrarecases
 - Availabilityandqualityofvoiceservicesisquite goodexcludedenseurbanareasduringpeaktraffictimes .
 - Operator'sbrandisalsoimportant


Services

Services

- Voiceisstilldominating
- Dataservicesgainingmomentumduetointroduction of 3Gnetworks,breakthroughongoing
- Mostoftheexistingnetworkshavebeenbuild forvoiceservice
 - Coverageandnetworkcostshavebeendriversin networkplanning
 - Usuallyminimumconfigurationusedinnetworkrollouts
 - Capacity(=voicecapacity)increasedafterwardson needbasis

- ARPU(=AverageRevenuePerUser)
 - Theoperatorincomefromvoiceservicesisexpected to decreaseatthesametimeARPUfromdataisincreas ing slowly
 - Operatorshaveincreasingcostpressure=>network costs shouldbeaslowaspossible

- 3.5Gnetworksandbeyondwillbebuildfordata services
 - VoiceservicesprovidedthroughVoIP
- Networkplanningandoptimization
 - Costsisincreasinglyimportantfactor
 - Mostoftheoperatorswanttouseoldsites(GSM) whileintroducingWCDMA,HSPA,,,=>increasing servicecoveragechallenges
 - Highercarrierfrequency, higherdataratesetc
 - Networkoptimizationimportant=>operatorswantto takeeverythingoutfromexistingnetworks

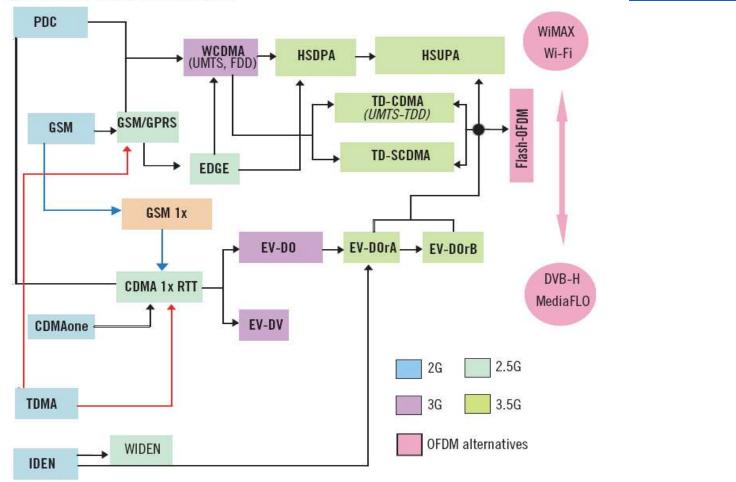
Selectionoftechnologyexamples

- Therearesomeissuesthatarecommoninnetwork planningindependentlyfromtheappliedtechnology
 - Environmentandfadingphenomena
 - □ Basictypesofinterference(co-channel,adjacentc hannel)
 - Trafficandservicedemands... butiftechnologycan' supportcertainservicethenitsdemandisignored
- Yet, theroleoftechnologyspecificissuesisincr easing
 - In'voiceonly' networksradioresourcesweremoreo rless fixedandresourcereuseratiowerelow
 - Theincreasingdemanddataservice,efficiencyand higher userratesisdrivingtowardsnetworkswheresamer adio resourcesareusedinall(oralmostall)cells.
 - Whileconventionalplanningisstillimportant, the optimization of the networks is also vital.

- Forthiscoursewehaveselectedsomemobile communicationtechnologiestoserveasexamples.
- Tojustifytheselectionwecarryoutabriefdiscu ssionon importanceoftheexistingandfuturenetwork technologies
 - Selectedtechnologiesshouldprovideillustrativee xamples
 - Selectedtechnologiesshouldbewidespreadand/ort hey shouldbearoundoncestudentsofthiscoursegradu ate
 - Someinterestingtechnologiesareleftoutduetol ackof time
 - Selectedtechnologiesshouldpresentgenerationsfr om2G tolatest3Gvariants

Firststep:IMT-2000Technologies

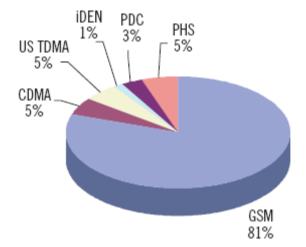
- InGSMtechnologyisdominatingin2G;itisclear choicefora2Grepresentativeinourcourse
- GCCENTRACE STATES ST
 - InternationalMobileTelecommunications-2000 (IMT-2000)istheglobalstandardforthirdgeneration(3G) wirelesscommunicationsasdefinedbytheInternati onal TelecommunicationUnion(ITU).In1999ITUapproved five radiointerfacesforIMT-2000asapartoftheITU- RM.1457 Recommendationandadditionallyapprovedanewstan dard in2007asthesixthIMT-2000radiointerface.
- IMT-2000'label' isimportantforawirelessmobile technologybecausethenithasanaccesstoglobal
 IMT-2000spectrum.Thelackofthislabelmaybeacruc
 ial obstacleforcommercialuseofthetechnology.


IMT-2000Technologies

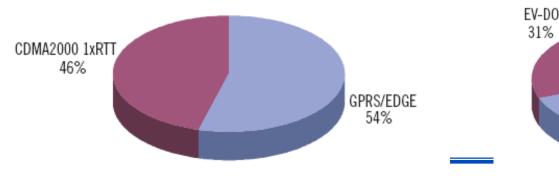
- IMT-DSDirect-Sequence
 - □ alsoknownas **WCDMA** orUTRA-FDD, usedinUMTS
- IMT-MCMulti-Carrier
 - alsoknownas CDMA2000, the successor to 2GCDMA (IS-95)
- IMT-TDTime-Division
 - Thiscomprises:TD-CDMA(TimeDivision- CodeDivisi onMultiple Access)andTD-SCDMA(TimeDivision- SynchronousCo deDivision MultipleAccess).Botharestandardizedby3GPPin UMTSlike UTRA TDD-HCR (3.84Mcps,5MHzbandwidth,TD-CDMAairinterface) and UTRATDD-LCR(1.28Mcps,1.6MHzbandwidth, TD-SCDMA air interface).
- IMT-SCSingleCarrier
 - alsoknownas EDGE
- IMT-FTFrequencyTime
 - alsoknownas DECT
- IMT-OFDMATDDWMAN
 - betterknownas WiMAX

Mobilenetworkevolutionpaths

Figure 1.1: Different network evolution paths

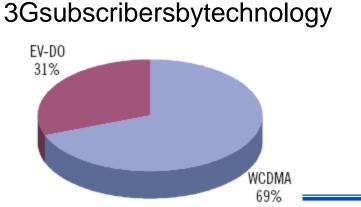


Theselectionof3Gtechnologiesseemsbittricky.Let'scheckhowwidespreaddifferenttechnologiesareandwhatarefutureforecasts



Technologyshares


2Gsubscribersbytechnology



2.5Gsubscribersbytechnology

Subscriberforecastfor2010 -2G/GSM -2.5G/GPRS/EDGE -2.5G/CDMA1xRTT -3G/WCDMA -3G/EV-DO -3.5G/HSPA -3.5G/EV-DOrA,rB

17

Disclaimer: Technologyshares as well as forecasts

varyfromsourcetosource

- 2GGSManditsevolutiontowards2.5GGPRSand EDGE
 - GSMcontinuestobethemostcommonvoicetechnolog y
 - Newroll-outsinemergingmarkets(India,China,Af rica)
 - GSMcapacityisstillincreasedbutinsomemarkets new voicecapacityisbuildonothertechnologies
 - EDGEcontinuestobeimportanttechnologyinnearf uture (aswellasitsCDMA2000competitor)
- Inthiscoursewe
 - gothroughsomebasicelementsonGSM/GPRS/EDGE networkplanning

- 3GWCDMAanditsevolutiontowardsHSPA
 - GRADING Service Ser
 - OptimizationofWCDMAnetworkparametersimportant taskalsoin future
 - HSPAimportantenhancementtoWCDMA,datacoverage challenges
- 3GLTEandmobileWiMAX (IEEE802.16e)
 - FutureOFDMAtechnologies, networkplanningandopt imization aspectsstillwidelyunknown. FirstmobileWiMAX rol I-outsongoing, firstLTEnetworks2009-10
- Inthiscoursewe
 - PutalotofemphasisonWCDMAandHSPA
 - Scratchthefuturechallengesrelatedto3GLTEand WiMAX
- Ifwehavetimethenwealsodiscusson
 - Relaytechnologies
 - Othernewnetworkextensions

- GSMwasoriginallydesignedforvoiceservices
 - □ Macro-celldeploymentwasabaselineassumption
 - SMSwasthefirst'killerapplication' ondataservi cesdue whichthecommercialpotentialofdataapplications were realized
 - Stilltodaymostofthevoicecapacityisbuildusi ngGSM
- GPRSwascreatedtoextendGSMforpacketdata
 - Drawbackwasthelackofmultimediasupportandlow bit ratesinphysicallayer
 - ThechangesincorenetworkduetheGPRSareactual ly revolutionary
 - SGSNandGGSNprovidepacketswitchedconnectionto IPnetworksalsoin3G
- LatestGSMevolutioniscalledEDGE
 - IndataratesEDGEiscompetitiveevenwithWCDMA

WCDMA

■ 3G/WCDMA

- Designedformultimediacommunicationsfromthe beginning
- Providesmoreefficientmeansforimageandvideot ransfer
- □ Variablebitratesupto2Mbps(Rel'99)
- Multiplexingofserviceswithdifferentqualityreq uirements intosingleconnection
- Qualityrequirementsfrom10%FERdownto10(-6)bi terror rate
- Supportforasymmetricuplinkanddownlinktraffic
- □ Goodspectralefficiency

DifferencesbetweenWCDMAandGSM

	WCDMA	GSM
Carrierspacing	5MHz	200kHz
Frequencyreuse	1/1	1/1-18
Powercontrol	1.5kHz('fast')	2Hz('slow')
Qualitycontrol	RRMbased	Mostlyduefrequency planning
Frequency diversity	Multi-path diversity	Frequencyhopping
Multi-antenna transmission	Beam-formingand transmitdiversity supportedinstandard	Simplenon-standardized methodscanbeapplied

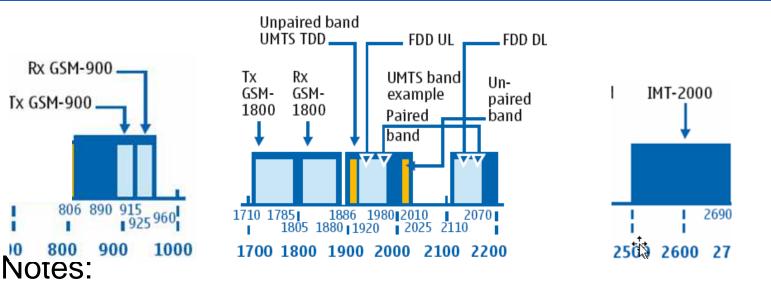
HSPA(HighSpeedPacketAccess)

- HSPAreferstotwoexistingstandards(HSDPAand HSUPA)
 - High-SpeedDownlinkPacketAccess (HSDPA)allows networksbasedonUMTS/WCDMAtohavehigherdata transferspeedsandcapacity.Specialcharacters:
 - Hybridautomaticrepeat-request(HARQ)
 - Fastpacketscheduling
 - Adaptivemodulationandcoding
 - AsofMay2007,102HSDPAnetworkshavecommerciall y launchedmobilebroadbandservicesin55countries
 - High-SpeedUplinkPacketAccess(HSUPA) isanuplink enhancementforUMTS/WCDMA
 - HSUPAcontainssimilarenhancementsasHSDPA:HARQ andpacketscheduler.

The IEEE802.16workinggroupisfocusingon broadbandwirelessaccessBWA)standards.

- WiMAX refersto "WorldwideInteroperabilityforMicrowave Access"byanindustrygroupcalledtheWiMAX Forum.
- IEEE802.16e(alsocalledasmobileWiMAX)isspeci fyinga mobileBWAsystem.Characters
 - ScalableOFDMAthatsupportchannelbandwidths between1.25MHzand20MHz.
 - Hybridautomaticrepeat-request(HARQ)
 - Fastpacketscheduling
 - Adaptivemodulationandcoding
 - Packetswitchednetwork
- FirstmobileWiMAX networkroll-outsongoing(USA/Sp rint)

- **3GPPLTE** (LongTermEvolution)isaname giventoa3G/UMTSevolutiontocopewith futurerequirements.
 - ItwillresultinthenewreleaseoftheUMTSstand ard.
 - ScalableOFDMAfrom1.25MHzupto20MHz
 - Veryhighspectralefficiency
 - Hybridautomaticrepeat-request(HARQ)
 - Fastpacketscheduling
 - Adaptivemodulationandcoding
 - Packetswitchednetwork
 - LTEstandardwillbereadyon2008andfirst products/networksarecomingat2009.


Spectrum

- Spectrumisvaluablepropertyfornetworkoperator.
 - Spectrumisobtainedthroughauctionor'beautycon test'
- Spectrumisscarce
 - Notalloperatorscangetspectrumalthoughtheywo uld needit=>spectrumefficiencyofthetechnologyis important
- ThereareglobalbandallocationsforIMT-2000 technologies
 - GlobalallocationsaredecidedinWorldRadiocongr ess (WRC)thatusuallytakesplaceaftereach4years. Latest WRCwereheldon2007.
 - Nationalregulatorsmaydotheirowndecisionsbut most nationalregulatorsfollowWRCdecisions.

IMT-2000Spectrum

- IMT-2000spectrumisinuseinEurope,Asia,Africa ,butin someregions(e.g.NorthAmerica)spectrumallocati onis differentfromtheabovefigure.
- □ Spectrumisscarceandinsomecountriesalsoexpen sive
- □ ThereareGSMspectrumon900MHzand1800MHz
- UMTSisoperatingon1900-2200MHzspectrum

- NewspectrumweregrantedbyWorldRadio Congress(November2007)forpresentand futureIMTsystems.
 - Animportantnewbandison3.4-3.6GHzfrequency (200MHz)
 - Alsosomebandsweregrantedonlowerfrequencies, round800MHz.Amountofnewspectrumdependson theregion.
 - Thesenewbandallocationsensurethegrowth opportunityforwirelessmobilebusiness(wehavej obs alsoinfuture).

Wayforward

Nextsteps

Nextlectures

- Planningaspectsthatarecommontoallcellular networks
- GSM/GPRS/EDGEnetworkplanning:Abrief introduction
- WCDMA/HSPAnetworkplanningandoptimization. Thistopicformthecoreofthiscourse.
- LTEandWiMAX planningaspects
- Futuretrends

If we have time