

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Cellular NetworkPlanning and Optimization Part X:WCDMAplanning challenges

JyriHämäläinen,

Communications andNetworking Department, TKK,19.2.2008

Planning – antenna height

Since WCDMAperformance is interference limited thecell dominance areas should be kept ascontrolled aspossible

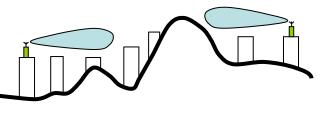
If theantenna islocated "too high" (noproper tilting)then

- Thecell gathers more traffic andexternal interference and thus the "effective" capacity is decreased
- Produced interference decreases thecapacity of the surrounding network
- Also surrounding network's service propability is negatively effected

 $\overline{\eta} = E\{\eta\} = \sum_{i=1}^{N_{own}} \frac{\left(E_b / N_0\right)_j R_j V_j}{W} \cdot \left((1 - \overline{\alpha}) + \overline{\iota}\right)$

Planning – antenna height

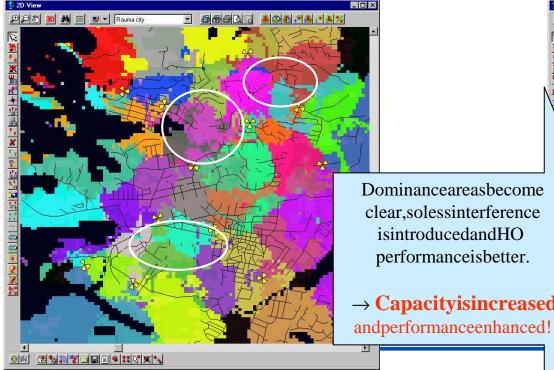
If WCDMAbase station antenna isplaced over the rooftop then antenna tilting isneeded.

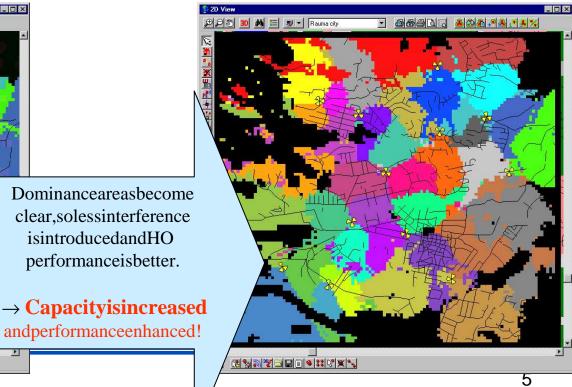


Planning – antenna azimuth

- Natural obstacles andbuildings should be used tocreate g ood dominance areas forWCDMAcells
- This improves the SHOperformance and decreases interfe rence

Example ofaUMTS cell,that isnaturally bordered (wall effect) by buildings

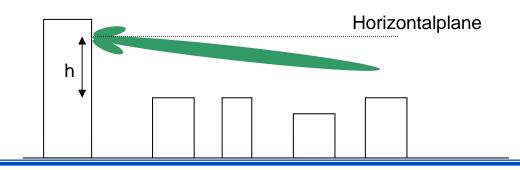



Planning – antenna height

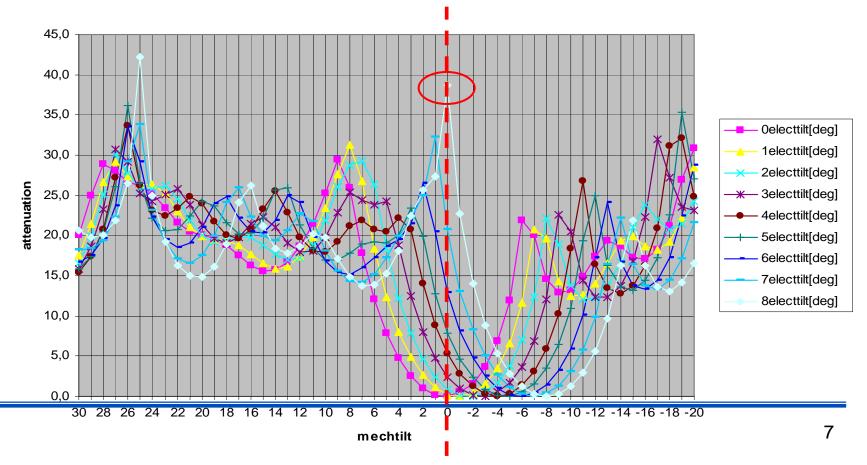
- When re-using theGSMsites, analysis should be madewhe ther theUMTS antennas should be positioned lower
- This analysis isdone with simulations andvisiting thes ite locations inpractise

Part ofnetwork with re-used few +40meterGSMantenna heights

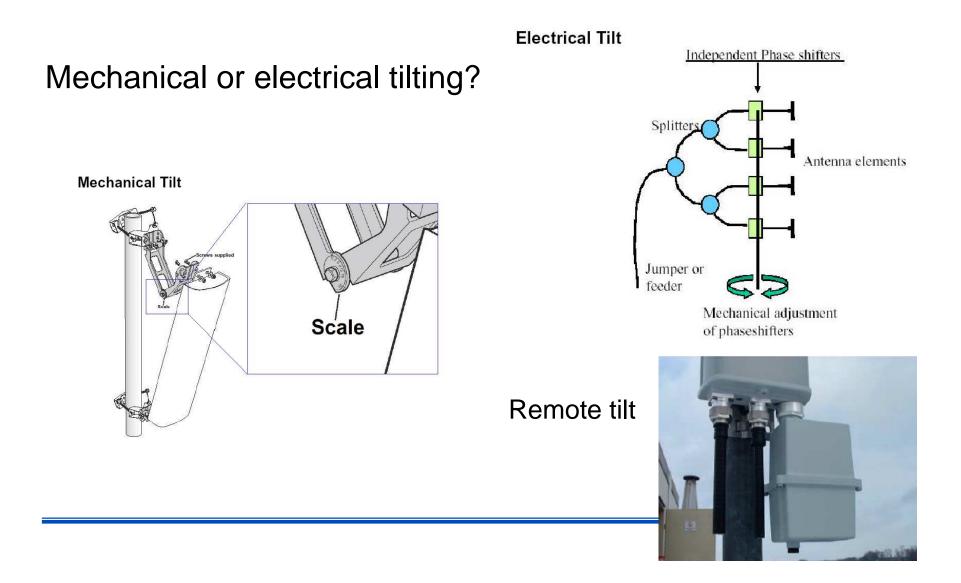
High UMTSantenna positions lowered to25-35m



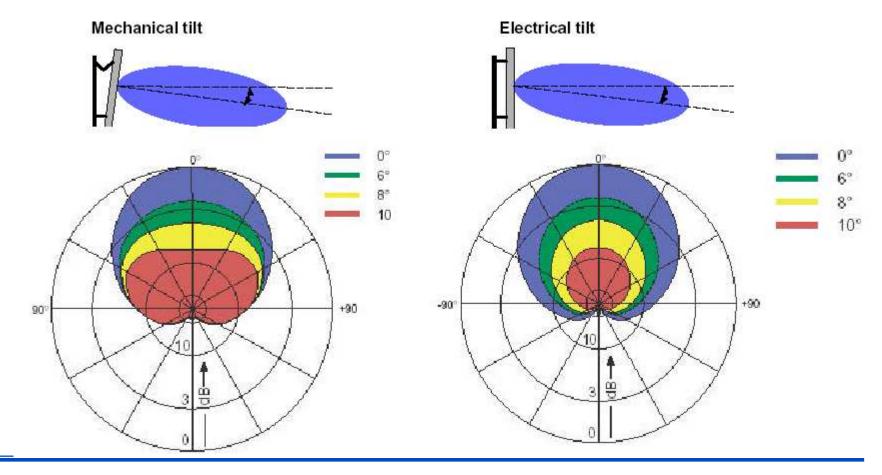
- Inaddition toantenna height, downtilting isvery impo rtant physical means forinterference minimising inWCDMA
- Basicrule of designing antenna tilt is that the height beselected with respect to the wanted amount of ce
- If the cell range with respect to available antenna feasible amount of tx-power becomes too large to su then the antenna must belowered
- Accordingtoexperience, the analysis should start and not by reducing the tx-powers of the cell, whic the tiltings are done


t oftheantennashould Ilrange sandtheirtiltingwitha itthenetworkplan,

withtheoptimumtilting hcanbeoptimised after


- Most important isplan thetilting according toantenna characteristics
- Thecorrectamountistheonewithwhichthefirst zeroofthe antennaradiationpatternispointedtohorizontal direction

- Inpreviousslidethehorizontalradiationpowerof the antennaissettominimuminordertoreceiveminim um amountofdirectinterferencefromthesurrounding cells.
- Typically WCDMAmacro-cell antenna has thefirst vertical lobe radiation pattern zero around 7-8degaway from themaximum point, which still allows areasonable cell size
- Theattenuationofthefirstzeroisusuallyover2 0dB comparedtothemainlobe.
- Usuallyitisofnousetoapplylargertiltthant heonethat pointsthefirstzerotohorizont sinceinterference from theantennaincreaseswithlargertilt.


Mechanical or electrical tilting?

- If there is both electrical and mechanical tilting available, a combination of these two can be combined properly case by case
- Mechanicaltilt
 - widenstheantennalobehorizontally, which can be used in some cases
 - doesnotattenuatetheradiationsideways
- Electrical tilt
 - □ attenuatestheradiationalsosideways
- Byselectingacombinationofthesetwothefirstz eroofth canbesettohorizontallevelandtheneededamoun tofp achievedsidewayshorizontallyisthereisaneedf orit
- Whenahighsiteistobeimplemented,theantennas s mounted, becausethentheneededlevelofattenuatio directionsiseasiertoachieve.

erooftheantenna	
tofpower	
orit	

shouldbewallntothewanted

- Accordingtoexperienceeven15degreesofdowntilt ing is not impossible (if the radiation pattern of the antenna supports it), although inpractise not very often needed.
- There has also been lot of discussion of apotential need to change thetilts often during the network lifecycle (even regurarly)
- However practise have not shown such need if thetilts are design well from thestart with helpfrom simulations
- But once WCDMAgets congested this might be given another look (Remote tilts).

Sectorisation

- According tosimulations andanalysis, sectorisation o fWCDMAsite helps toimprove capacity of the network
- However, aspermissions for additional antennas are qui te hard to come by, e.g. 6-sectorsites might be very rare

Antenna 3 dB Other to own cell

1.1.1

sectorisation can increase thecapacity if correct beamwidth antennas are selected andSHOproperly controlled

beam width	interference ratio, i		overhead	probability
				(outdoor to indoor for 8/64/144 kbps
		OMNI CASE		
omni	0.79	240	28%	70 / 32 / 40%
]	THREE SECTOR C	ASE	
120°	1.33	441	39%	85 / 50 / 59%
90°	1.19	461	35%	87 / 55 / 62%
65°	0.88	575	34%	86 / 59 / 62%
		FOUR SECTOR C	ASE	
120°	1.72	489	54%	90 / 62 / 68%
90°	1.49	510	51%	92 / 67 / 72%
65°	1.09	604	41%	92 / 70 / 71%
33°	0.92	691	40%	88 / 65 / 64%
		SIX SECTOR CA	SE	
120°	2.18	593	64%	95 / 75 / 79%
90°	1.97	627	59%	96 / 80 / 82%
65°	1.43	758	55%	96 / 80 / 81%
33°	1.15	880	48%	93 / 76 / 76%

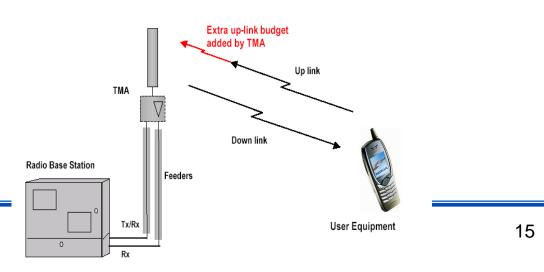
Served users

Soft handover

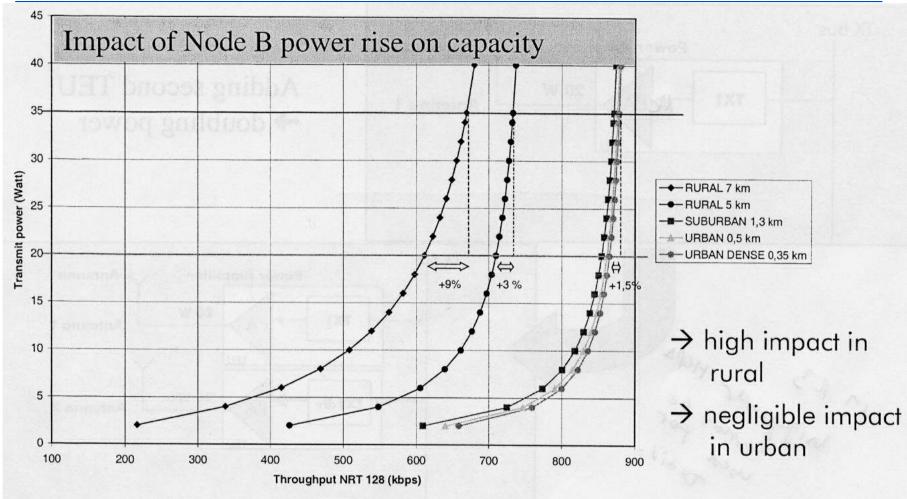
UL coverage

Mast head amplifiers

- TheMHAcan be used inWCDMA intheuplinkdirectionto compensateforthecable lossesandthusreducingth erequired mobilestations' transmitpowers.
- UsingMHAtheperformanceinuplinkcan beimproved alsoin WCDMAsystems.
- However inpractise if thenetwork turns todownlink limi ted then theMHAwon't help


		Other to own cell interference ratio, i	Served users in UL	Served users in DL	UL coverage probability (outdoor to indoor) for 8/64/144 kbps		
		THREE SECTORED CASE, 65° antenna					
	no MHA	0.60	1038	807	93 / 78 / 78%		
	with MHA	0.61	1064	746	95 / 82 / 82%		
Simulations	FOUR SECTORED CASE, 65° antenna						
by Nokia	no MHA	0.73	1089	884	96 / 86 / 85%		
Uy NOKIA	with MHA	0.73	1107	846	98 / 89 / 89%		
	SIX SECTORED CASE, 33° antenna						
	no MHA	0.88	1124	1052	97 / 87 / 86%		
	with MHA	0.90	1132	1021	98 / 90 / 90%		
	no MHA, 4 dB cable losses	0.88	1109	1057	95 / 83 / 82%		
	with MHA, 4 dB cable losses	0.90	1132	1016	98 / 90 / 90%		

Mast head amplifiers


Increasesuplinkcoverage/capacityinlowloadedne twork Compensatesforfeederandcombinerlossesinthe up linkdirection, increasing coverageforsuburban, rural and roadsites wherea ntennasareinveryhigh positionsandthefeederlinesarelong AllowsUEs toreducetransmissionpowerlevel Withheavilyloadednetwork(i.e.highinterference)thebenefit ofthemast headamplifieris negligible raffic, users incelledge, DL Alsoindownlinklimited3Gnetworks(DLorientedt tx-powerperuserlowe.g.inforhighbitrateind oorusers)theusageofmast headamplifierisnotjustified Needsextraspaceinthemastsandincreasethewin dload

MHAissometimescalledas TowerMountedAmplifier (TMA)

Transmit power increase

- Theachievable capacity increase from doubling thetransmit power isfar from double.
 - Recall DLload equation andrelated example
- Due todownlink character, higher transmit power will be more efficient inrural than inurban environments.
- Capacity gain ishigher when increasing the power e.g.from 5Wto10Wthan it isfor increase 20W=>40W.
- Thecapacity gain depends onthecell range.

Carrier addition

- Adding acarrier leads toless transmit power percarrier ,if no additional PAisinstalled.
- Additional carrier can also be used fore.g.optimisation ofindoor coverage with clever network planning andparametrisation (not with power reduction).
- Even with less transmit power, there is acapacity gain po ssible especially forhigh traffic areas (low cell range)
 - □ Actual gain produced isheavily dependent ontraffic mix

	DL Capacity gain 1 PA			
Carrier configuration	Dense Urban	Urban 550m	Suburban 1700m	Rural 7km
	350m			
1C>2C	92%	87%	77%	60%
2C>3C	41%	37%	27%	15%

- Default powers are determined by thevendors
- Ininitial phase of the RNP must DLTCHs & CCHs tx-power rs and ULMS max tx-power be defined
- InDLthepower tuning between TCHs andCCHs has effect on network performance
 - •more power toCCHs \rightarrow better channel estimation,which improves theEb/No performance and thus improves coverage
 - more power toTCHs \rightarrow better capacity
 - •rule ofthumb:15-20% of DL total power is used for CCH s
- Mobilemax tx-power should be setto21-24dBm (network o peration and battery lifeofmobilesupport this, but also 27dBmter minals are seen...)
- Most important tunable tx-power isthepilot (CPICH)

- Default transmissionpowers are determined by theequipm ent vendors.
- Ininitial phase oftheplanning
 - □ Transmissionpowers of TCHs and CCHs needs to be set
 - Maximum UEtransmissionpower istobe defined
- InDLthepower tuning between TCHs andCCHs has effect on network performance
 - $\hfill\square$ More power toCCHs $\hfill \rightarrow$ better channel estimation,which improves the Eb/Noperformance and thus improves coverage
 - $\Box \quad \text{More power toTCHs} \ \rightarrow \text{better capacity}$
 - Rule ofthumb:15-20% of DL total power is used for CCH s
- Maximum UEtransmissionpower should be setto21-24dB m (network operation andbattery life)
- Most important control channel isthecommonpilot chann el (CPICH)

- PrimaryCPICH(P-CPICH) istransmittedcontinuously withconstantpower(spreadingfactor256,nopower control)soitisinfactasignificantsourceofi nterference.
 - If received P-CPICHisnot included intheUEactive set ,all thepower received isinterference (this iscalled aspi lot pollution)
- ThephysicalcellrangeisdefinedbyP-CPICH transmissionpower
 - Thesamecoveragemustbeguaranteedforothercomm on channelsaswell
 - Themajor effects when thepilot power isadjusted
 - Thehandoverbehaviourofthenetworkcanbechange
 - Load can be divided between cells tocertain extent
 - Ability to divide the base station power between cel coverageandcapacity.

- P-CPICHtakestypically5-20%ofthenodeBmaximum transmissionpower
- Clear dominance areas forcells should be ensured with consistent P-CPICHpower planning
 - CPICHpowers should be planned first, then other SHO parameters
 - GoalistolimitcelloverlappingsothattheP-CPI CHpower inthecellsoutsideactivesetisatleast10dBbe lowthebest cellintheactiveset
- Large differencies inP-CPICHpowers of neighbouring cells should be avoided

- Indicators forP-CPICHpower level inpractise
 - Other-to-own cell interference (recall load equation discussion)
 - □ Frequency ofactive setupdate messages
 - Dropped calls andthroughput
- With low amount of P-CPICHpower, the interference produced goes down, but also therobustness of the network is effected negatively.
- Higher amount ofpower increase signalling and SHOareas aswell asproduced interference, but the network operation ismore robust.

- Alsoothercontrolchannels besideCPICHneedpower(for exampleBCH)toenablecorrect functioningofthesystem
- Alltheothercommoncontrol channelsarepoweredinrelation totheP-CPICH
- Thegoalofallocatingpowerto thecommonchannelsistofinda minimumpowerlevelneededfor eachchanneltosecurethe networkoperationandtoprovide thesamecellcoverageareaas withCPICH,butnottowaste anycapacityleftforthetraffic channels.

Channel	Allocated power
Max power of the Node B	43 dBm
СРІСН	Max power – 10dB
РСН	Max power – 1113 dB
SCH	Max power – 11 12 dB
FACH	Max power – 12 – 13 dB
ВСН	Max power – 11 13 dB

Typical DLpower recommendations

Recall:Somecontrolchannels

- PCH:Pagingchannelinitiatesthecommunicationfro mnetworkside
- SCH:Synchronizationchannel
- FACH:Forwardaccesschannelcarriescontrolinform ationto terminalsthatareknowntobelocatedinthegiven cell.Isusedto answertotheULRACHmessage.
- BCH:Broadcastchannelcarriesnetworkspecificinf givencell(randomaccessslotsforUL,antennacon
- ormationtothe figurationetc) leepmode
- PICH:Pagingindicatorchannelisusedtoprovides operationforUE
- AICH:Acquisitionindicatorchannelisusedtoindi catethereception ofRACH
- CCPCH:Primaryandsecondarycommoncontrolphysica Ichannels (P-CCPCHandS-CCPCH)arephysicalchannelsthatca rryBCH, FACHandPCH.

Channel	Allocated power	Power out of the total common channel powers	Power out of the maximum Node B transmission power (20W)
P-SCH	0,331 W		
S-SCH	0,224 W		
PICH	0,1 W		
AICH	0,126 W		
Р-ССРСН	0,245 W		
S-CCPCH	1,165 W		
CPICH	1 W	31 %	5 %
All common Ch	3,191 W	100%	16 %

- P-CCPCHtransmittedwithactivity factor0,9
- S-CCPCHtransmittedwithactivity factor0,25
- SCHs transmittedwithactivityfactor0,1
- AICH, PICH and CPICH are transmitted continuously
- The BCH is transmitted on the P-CCPCHandtheFACHandPCHonthe S-CCPCH.

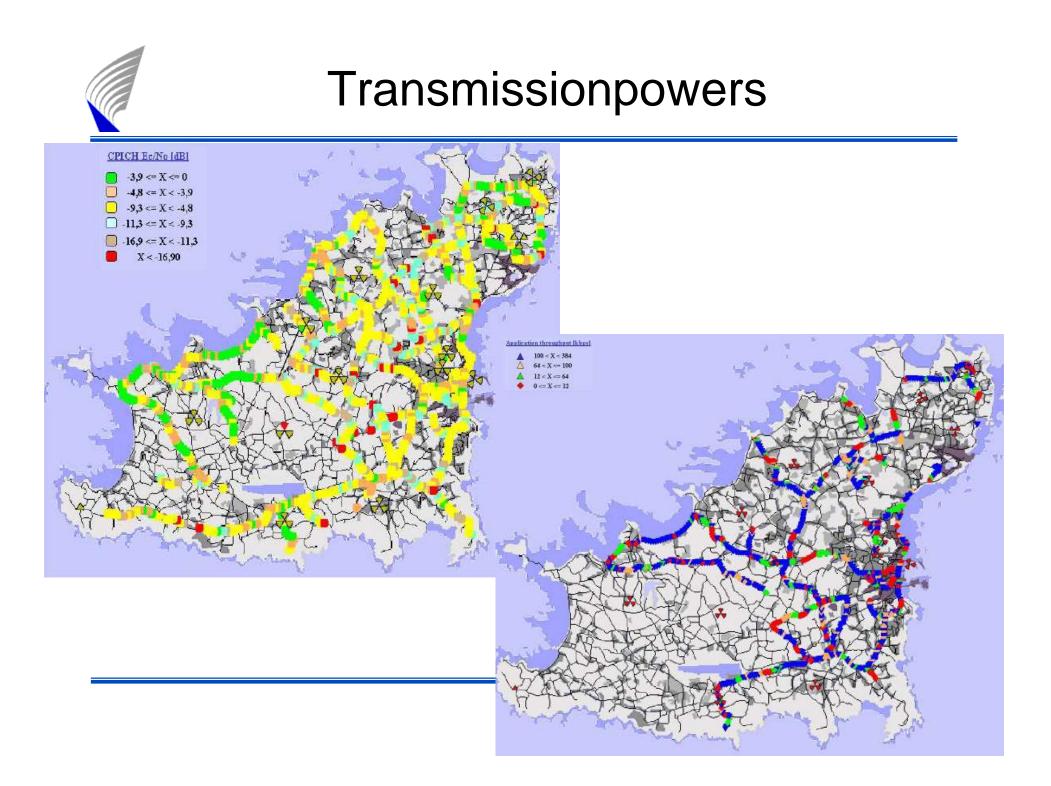
• theBCHistransmittedontheP-CCPCH continuouslyexceptduringthe256first chips,whentheP-SCHandS-SCHare transmittedwecanassume0,1activity factorfortheSCHs and0,9fortheP-CCPCH.

Transmissionpowers/DCH's

- Dedicated channel (DCH)isatransportchannel that is mapped to dedicated physical datachannel (DPDCH)anddedicated p hysical control channel (DPCCH)
- Theinitial power forDPDCHisimportant because ofrel iable service set-up and interference minimisation
- Theinitial DCHpower isdetermined by RRMvia
 - Spreading Factor
 - Measured Ec/lo onP-CPICH
 - □ Transmitted power on P-CPICH
 - □ Servicerequirements
- Network planning usually needs toplan atleast the"init ial DLSIR target" &"default CPICHpower"
- InUplink thenetwork planning can setmaximum UETX-pow er and initial PCsettings, such as "ULSIR target", which wi II effect the power of the first connection

- Theminimum andmaximum transmitted code powers can be set per cell (interference &coverage control)
 - It israther important not tosetthis maximum power too hi gh.Too high setting ofthemaximum power will lead toinstability in thedownlink transmitted carrier power behavior andmight effect theq uality of the commonchannels inacell.
- During theoperation, powers allocated perDCHconnect ion can be planned according tovendor specific algorithm
 - This isimportant totheservice probability and allows improving of high bitrate services if so decided

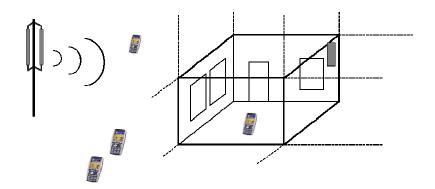
Planning only forP-CPICHpower interms ofachievable service coverage isnot enough, needed DCHpower inrelation toP-CPICH isthekey.



Antenna andtransmissionpower designlead tocertain achievable Ec/Io over thenetwork, which inturn depict a certain service level

DCHEc/lo determines theservice coverage!

$$\frac{E_C}{I_O} = \frac{E_b / N_0 \cdot R}{W \cdot (1 - \eta)} = \frac{RSCP}{RSSI}$$

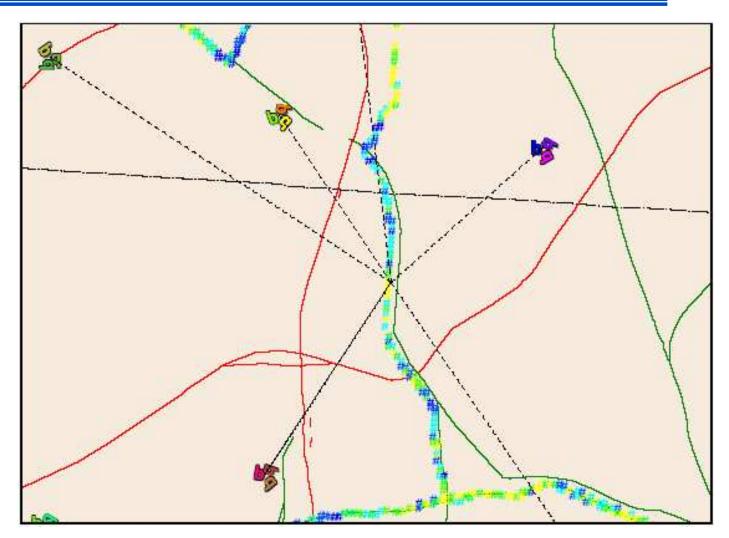

RSCP=Receivedsignalcodepower=receivedpower onone codeafterdespreading.Measuredinterminal. RSSI=Receivedsignalstrengthindicator=receive dwideband poweronthewholebandwidth.Measuredinterminal.

Indoor coverage aspects

- MostoftheUMTSuserswillprobablybe indoors.Thereforegoodindoorcoverage isvitalforUMTSsuccess
- InGSMindoorcoverageispretty straightforwardtoplan.Howeverthisis notthecasewithWCDMA
- Indoor coverageprovidedfrom outdoorbasestationsishighly sensitivetocellloadincrease in WCDMA
- Ifoutdooruserisgivenahigh-datarate bearerthiscanresultinlossofcoverage tousersindoors

INDOORCOVERAGEANALYSIS:

- ConsiderdifferentRAB/coverage scenarios
- Carefullyestimatetheeffectofcell loadingtothecoverage
- Userepeatersifpossible
- Assesstheneedforindoorsites
- Carryoutreal-lifeverificationof
 planning



- Pilot pollution isfaced onacertain area when there isn o clearly dominantCPICHs over theothers.
- Thepilotpollutioncreatesanabnormallyhighleve lof interference,which islikelytoresultintheperfo rmance problems
 - Increased interference level
 - Poor service quality, decreased throughput or increased d elay
 - Decreased service access
 - Frequent changes inActive Setandpotential risk for unnecessary handovers.
 - Highernon-controllableload

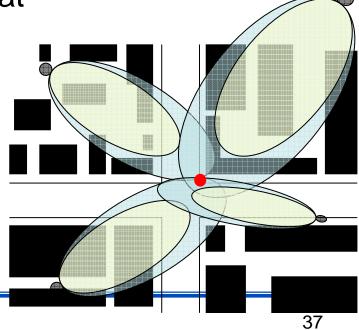
Pilot pollution

- Theyellow dots represent points where 4-5 CPICHs were received within 6dBwindow
- AsActive Setsize istypically 3,in this situation the rest ofthePilots left outsidethe ASproduce unnecessary interference

- Pilot pollution can be (atleast partly)avoided by planning theCPICHpowers andSHOparameters so that throughout thenetwork there isonly 2-3CPICHs available fortheUE's,strong enough tobe included in theActive Set.
- All CPICHoutsideActive Setshould be clearly weaker
- Antenna design,height andtilt are selected carefully
- Balanced UL&DL
- SCH/DCHpower adjustments

Neighbour cell relations

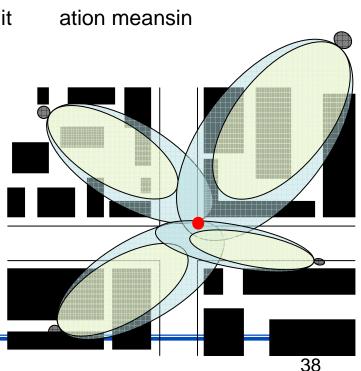
- TheMonitored Setisalso called asaNeighbour List.T his list can be defined innetwork planning andit can be later changed in network optimization.
- Thelist ofneighbours playanimportant role since WCDM Ais interference limited.Insufficient planning ofneighbo ur relations will lead tounnecessary high interference
 - E.g.if suitable SHOcandinate isnot inthemonitore se tandthus it is not selected toactive setthen it's turning toa"pilot p olluter"
 - Ontheother hand, unnecessary neighbours increase sign alling and effects the SHOselection negatively
- Accurate neighbour relations planning ismuch more import ant than inGSM
 - InGSMit ispossible to"hide" cell planning mistakes by frequency planning,inCDMAthesuch inaccuracies will effect the system capacity
 - Theeffort saved infrequency planning isspent inmore d etailed cell planning



Neighbour cell relations

- Theparameters tocontrol theneighbour relations andt healgorithms how system evaluates neighbours forcell lists depend onvend or
 - minimum CPICHRSCPor Ec/lo
 - Ec/lo margin
 - maximum number ofneighbours
- Aneighboring set(or monitored set)isdefined foreac h cell
 - Utilise planning tools automatised functions and check with drive tests
 - Optimise according toCPICHcoverage andSHOparameters
- UEmonitors theneighboring setthat may contain
 - □ Intra-frequency monitored list:Cells onthesame WCDMAca rrier (SoftHO)
 - □ Inter-frequency neighbor list:Cells onanother WCDMAca rrier (hard HO)
 - Inter-system neighbor list:Foreach neighboring PLMN
- Missing neighbour can be detected during drive tests
 - □ If thebest cell shown inthe3Gscanner does not enter the active setmissing neighbour
 - Include themissing cell toneighbour list if it's wanted to active setor change cell plan if not

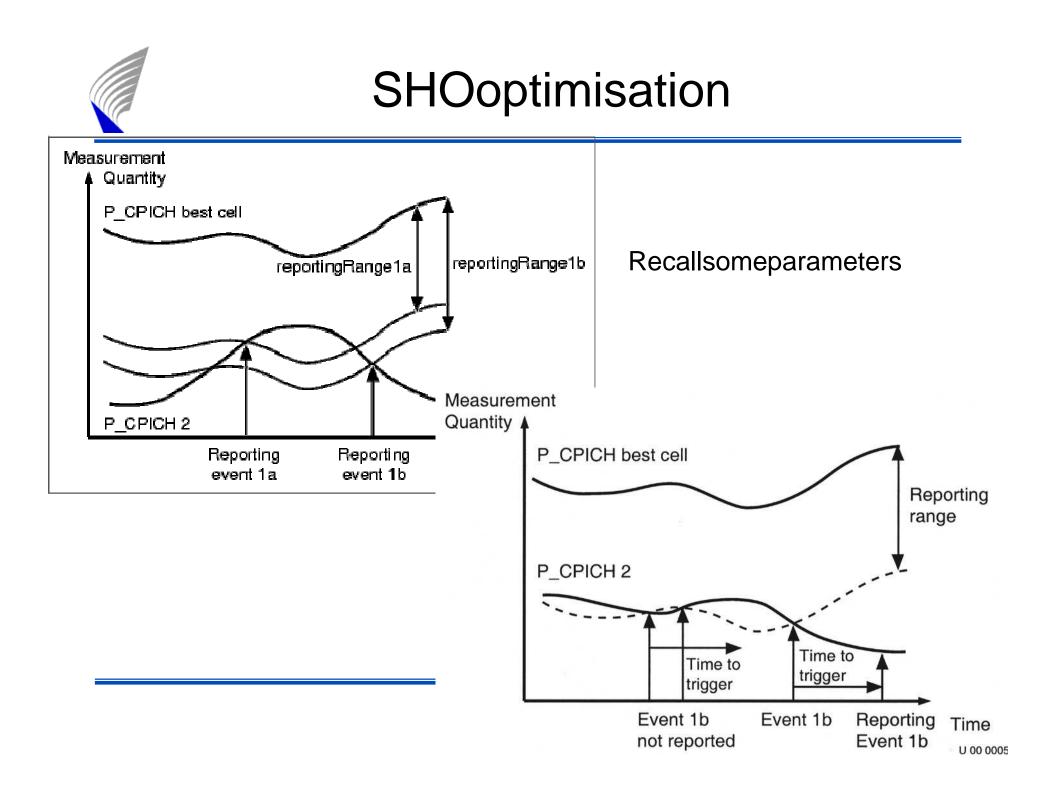
- Soft/Softer HOplanning andcorrect operation isone ofthemost important means of optimising WCDMA networks
- Theimportance ishigh because ofthehigh biterate (pathloss sensitive)andRT(delay sensitive)RABs
- SHOismeasured interms ofprobability, thepercentage ofall connections that are inSHOstate
- Theprobability iseffected by network planning andparameter settings

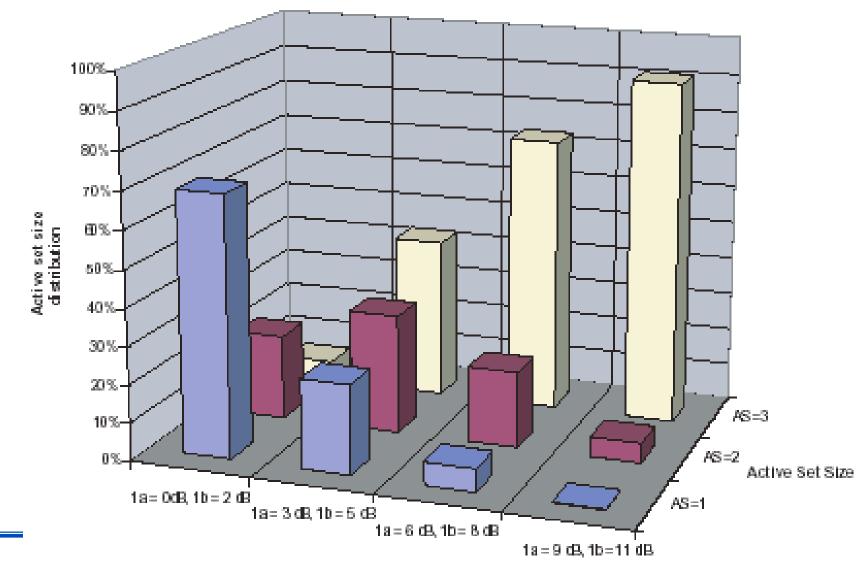

SHOs haveeffecttothenetworkperformance PROS

- Requiredtoavoidnear-fareffects
- Coverageincreaseswhenmoredistantuserscanconne
- Capacitycanbe"increased" ifmoreuserscanbecon
- AlongsidewithPC,SHOisthemaininterferencemigit
 WCDMA

ct nected

CONS


- Requiresmoreconnections, thuse ats DL
- transmissionpower and decreases capacity
- IntroducesmoreinterferencetoDL
- Increasesthetrafficinlub
- 40%SHOprobability \rightarrow 1.4timesthetraffic!



- ProbabilityforsoftHOshouldbesetto30-50% and forsofterHOto 5-15%, depending on the area
 - ToohighSHO%resultsinexcessoverlappingbetween cells \rightarrow othercellinterferenceincreases \rightarrow capacitydecreases
 - Too high SHO%also leads topoorly utilised network capaci ty (unnecessary links)
 - WithtoolowSHO%thefullpotentialofnetworkis notutilisedand transmissionpowerscannotbeminimized → troublewithinterference
- SHOperformanceisplanned with aplanning tool andopt imised by measurementsinlivenetwork.
- InearlystageSHO%canbeplannedhigh,sincethe trafficdensityis smaller.Withincreasingtrafficcoveragedecreases andSHOareas becomesmaller.
- SHO%canbetunedwithrelatedparametersanddomin ance
- SHOmostimportantinurbanareasduetoserioussh

anceareas adowing

Settings of reportingRange1a (1a) and reportingRange1b (1b)