

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Cellular NetworkPlanning and Optimization Part XI:HSDPA

JyriHämäläinen, Communications andNetworking Department, TKK,25.1.2008

HSDPA

- HSDPA= High Speed Downlink Packet Access.Release5was thefirst HSDPA release(2005)
 - AsofMay2007,102HSDPAnetworks havecommerciallylaunchedmobile broadbandservicesin55countries
- HSUPA= High Speed Uplink Packet Access.Release6was thefirst HSUPA release(2007)
 - Firstnetworkslaunchedduring2007
- HSPA =HighSpeedPacketAccess= HSDPA+HSUPA

HSDPA

Datarates

- WCDMA:Peakdatarate2Mbps,highestpracticaldata rates upto384kbps
- HSDPA:Peakdatarate14.4Mbps,practicaldatarat esup tofewmegabits
- Carrierdatathroughputincreased50-100%compared to WCDMA
- Reduced latency when compared toWCDMA
- Packet switched system
- HSDPAenables possibility torapidly allocate alarge fraction of resources for a specific user

MainchangestoWCDMA

- Shared channel transmissionintroduced
 - □ HS-DSCH(High-Speed Downlink Shared Channel)
 - □ Enables dynamic allocation of radioresources between us ers
- Fast channel-aware scheduling
 - Controls towhich user theHS-DSCHtransmissionisdir ected
 - Take intoaccount theradiochannel conditions
- Adaptive modulation andcoding
 - QPSKand16QAMmodulationsapplied(inWCDMAonlyQ PSK applied)
 - □ QPSKcarry2bitsand16QAMcarry4bits
 - Combinationofmodulationandcodingisdecidedbas edonchannel conditions
- Hybrid automatic repeat request (HARQ)
 - □ User datacan be transmitted multiple time with different c oding
- Two additional control channels (HS-SCCH, HS-DPCCH)
- NofastpowercontrolinHSDPA

TTI=Transmittimeinterval

HS-DSCHillustration 5

HS-DSCH

ThereisDSCHalreadyinWCDMAbut

- PowercontrolisappliedinWCDMADSCH
- □ Spreadingfactorisvariable
- OnlyQPSKmodulation

InHSDPAtheHS-DSCHhas

- Nopowercontrol(linkadaptation, channelawaresc heduling and HARQ formamore efficient combination)
- □ Spreadingfactorisfixed(SF=16)
- Numberofcodesgrantedforausercanbechangeda fter each2mstimeinterval
- QPSKand16QAMmodulations(64QAMafterrelease7)
- Upto15parallelcodescanbeassignedtoauser(multicodeoperation).Yet,terminalsmaysupportonly5 parallel codes.

HS-DSCHvs.DCH

Feature	DCH	HS-DSCH
Variable spreading factor	Yes	No
Fast power control	Yes	No
Adaptive modulation +coding	No	Yes
Fast L1HARQ	No	Yes
Channelaware scheduling	No	Yes
Multi-code operation	Yes	Yes,extended

Channel-awarescheduling

- Channelawareschedulingisalsocalledas
 - Channeldependentscheduling
 - Fastscheduling
- Thisschedulingutilizemulti-userdiversity
 - Differentusershavedifferentchannels
 - Wecansendtouserwhohasthebestchannelcondit ions (figureofpreviousslide)
 - Yet,inHSDPAwecangetbestbenefitfromchannel aware schedulingonlyifdelayrequirementisnottight
 - Whileschedulinguserswefaceatrade-offbetween fairness andcapacity
 - Channelawareschedulinggivesbestperformancewhe n thereishighloadofNRTdata.

HSDPA- GeneralPrinciple

- Variablespreadingfactorandpowercontrolthatar e usedinWCDMAarereplacedbyadaptivemodulation andcodinginHSDPA
- InWCDMAdownlinkpowercontroldynamicsis20dB whileinuplinkitis70dB.
 - DLpowercontroldynamicsislimitedbyintra-cell interference(interferencebetweenparallelcodes).
 - Asaresulttransmittedpowertousersnearthecel Icentrein unnecessaryhigh.
 - InHSDPAadaptivemodulationandcodingselectshig ordermodulationandlowcodingrateforusersnear centre=>lessradioresourcesareneededforthose andlessinterferenceisgenerated.Alsosignifican dataratesareavailableforusersnearthecellce

Hybridautomaticrepeatrequest(HARQ)

- Highlyeffectivetechniquethatclearlyincreasest hesystem efficiency
- InHARQterminalrequestsretransmissionwhendata blockis erroneouslyreceived.
- Retransmittedandoriginaldatablocksaremergedu singsoft combining,i.e.receiverstorebitsofthefirst(e rroneous)blockina softform(2ormorebitsareusedtoexpressasin gledatabit)
- Thecoderateincreaseswithretransmissions.Hence ,wemay sendfirstpacketwithoutcodingbutincaseofret coderateforfirstandsecondpacketis½.Ifther eisstillerrorwe candoretransmissionagainandcoderateofthree packetsdrop downto1/3.
- ForHARQweneedACK/NACK(acknowledgement,negativ e acknowledgement)informationfromterminal.Thisin formationis sendviaHS-DPCCH.

- TwocontrolchannelsintroducedinHSDPA
 - Downlinkhighspeedsharedcontrolchannel(HS-SCCH)
 - Uplinkhighspeeddedicatedphysicalcontrolchanne I(HS-DPCCH)
- HS-SCCHinformationforterminal
 - Appliedmodulationandchannelcoding
 - Whichspreadingcodesterminalshoulddespread
 - OtherinformationlikeARQprocessnumberetc
- HS-DPCCHinformationforNodeB
 - ACK/NACKshowingwhetherpackethasbeencorrectly receivedornot.UsedforHARQ.
 - CQIthatindicateswhichtransportblocksize,modu lation typeandnumberofcodescouldbereceivedcorrectl y.

HSDPA- someUEcategories

- Theoreticalpeakbitrateupto14Mbps
- 1.8Mbpsand3.6Mbpscapabilitiesfirstinmarket

Max.number ofHS-DSCH codes	Minimum inter-TTI interval	Bitrate	QPSK	16QAM
5	1-3	3.6Mbps	Yes	Yes
10	1	7.2Mbps	yes	yes
15	1	10.1Mbps	Yes	Yes
15	1	14.4Mbps	yes	Yes
5	1-2	1.8Mbps	yes	no

HSDPAthroughput meets theory

Maximum bitrates reached inthefield

Throughput[kbps]

HSDPAnetwork planning

HSDPAdimensioningprocess

TypicaldimensioningstepsforHSDPA:

- 1. Trafficengineering
 - OperatorusuallydefinesatrafficmixwithQoS targ ets
 - Estimatedsimultaneousnumberofconnectionsper bearer/servicetype
- 2. Nodeconfigurations
 - \Rightarrow Carrierconfiguration(1+1+1,2+2+2,3+3+3oretc.)
 - ⇒ BasebandHWconfiguration
- 3. Iub configurations
 - NumberofNodeBs,carrierconfigurationandsimulta neous numberofconnectionsperbearerneededasaninput .
 - ⇒ NumberofE1linesperNodeB
- 4. RNCconfigurations
 - Iub resultsneededasaninput.
 - AreasthatshouldbecoveredbyoneRNClocation.
 - ⇒ NumberofRNCs and configurations

HSDPAplanningprocess

HSDPAplanningprocess

1. MonitoringandanalyzingexistingR99networkperfo rmance

- AverageusedNodeB power
- AverageNodeB HWutilization
- SHOoverhead

2. Dimensioning, preplanning and deployments trategy

- NeededNodeB powerresourcesforHSDPA
- HSDPAstrategy:Hotspotorwholeareacoverage,de dicatedorshared carrier

3. Parameterplanning

- Parameterprioritiesandpowerthresholds
- Sharedcarrier
 - PowerallocationforHSDPA
- Dedicatedcarrier
 - DirectedRRCsetupfor2ndcarrier
- Mobility

4. Performancemonitoring

Countersandonlinemonitoring