

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Cellular NetworkPlanning and Optimization Part VI:WCDMABasics

JyriHämäläinen, Communications andNetworking Department, TKK,24.1.2008

Outline

- Networkelements
- Physicallayer
- Radioresourcemanagement

Networkelements

Networkelements

- TypicallyPLMNisoperatedbyasingleoperator
 - ConnectedtootherPLMNs andnetworkslikeInternet
- UserEquipment(UE)contains
 - Mobileequipment(ME):RadiocommunicationoverUu interface
 - UMTSSubscriberIdentityModule(USIM):Subscriber identityinformation,authenticationalgorithms, encryptionkeysetc

- UMTSTerrestrialRadioAccessNetwork (UTRAN)
 - NodeB(BaseStation):Handles/managesthetraffic betweenUu andlub interfaces.Basictaskslikecodin g, interleaving,rateadaptation,modulation,spreadin g etc.
 - RadioNetworkController(RNC):Controlradio resourcesinitsoperationarea.Provideservicesf or CoreNetwork(CN).Loadandcongestioncontrol, admissionscontrol,codeallocation,radioresource managementtasks.

- MobileServicesSwitchingCentre(MSC)/VisitorLoca tion Centre(VLR)
 - HandlesswitchinginCircuitSwitched(CS)connecti onsand holdvisitingusersserviceprofiles.
- ServingGPRSSupportNode(SGSN)
 - SimilarfunctionalityasinMSC/VLRbutusedforPa cket Switched(PS)services
- OtherCNelements
 - GatewayMSC(GMSC):HandlesincomingandoutgoingC S connections
 - GatewayGPRSSupportNode(GGSN):LikeGMSCbutin PSdomain
 - HomeLocationRegister(HLR):Mastercopyofusers serviceprofiles

Physicallayer

Uplinktransmissionpath

- Spreadingcodesareusedtoseparatedataandcontr ol ofauser.
- Scramblingcodesareusedtoseparatedifferentuse rs.
- DualchannelQPSKmodulation(dataandcontrolinto differentl/Qbranches)

- Userswithinacell(sector)areseparatedby orthogonalspreadingcodes(sometimesalsocalleda s channelizationcodes)
- Cells(sectors)areseparatedbyscramblingcodes
- QPSKmodulation

- Spreadingisdoneusingorthogonalcodes
 - Codesremainorthogonalonlyifsynchronizationis perfect
 - Multi-pathfadingwillreducetheorthogonality

. . . .

Spreading

Spreadingprovidesprocessinggain.Letusdenote

W=systemchiprate

R=userbitrate

Thenprocessinggainisdefinedby

$$PG = 10\log_{10}\left(\frac{W}{R}\right)$$

 Whileuserdatarateincreases,theprocessinggain decreasesaswellasthespreadingfactor.Hence,i tis harderforthereceivertodetectthesignalcorrec tly.

Sometimeswealsousetermspreadinggain.ltrefer sto value
 Spreading gain = 10log₁₀(SF)

- SomemeasuresthatareusedinWCDMA receiverinvestigations
 - CINR=Carriertointerferenceandnoiseratio,als
 SINRisused
 - CIR=Carriertointerferenceratio,alsoSIRisus ed
 - □ SNR=Signaltonoiseratio
 - E = Energyperuserbitdividedbythenoisespectral density=processinggain*powerthatisneededto overcometheinterferencefromotherusers.
 - Notationiscommonlyusedfor
 E

- AbasicreceiverthatisusedinWCDMAiscalledas RAKE
 - Themultipathchannelthroughwhicharadiowavepr canbeviewedasasumofmanydelayedcopiesofth transmittedwave,eachwithadifferentmagnitudea arrivalatthereceiver.Eachmultipathcomponentc originalinformation=>ifthemagnitudeandtime-o eachmultipathcomponentisknown(throughchannel estimation),thenallthemultipathcomponentscan
 beadded
 - RAKEisdesignedtocountertheeffectsofmultipat doesthisbyusingseveralfingers,eachdelayed(b somechips)inordertocatchtheindividualmultip components.
 hfading.It yorderof ath
 - Componentsignalsfromfingersarecombinedcoheren tlyfor thesumsignalthatisusedindecoding.

Scrambling

- Scramblingcodesareusedtoseparateusersin uplinkandcellsindownlink
- Scramblingisusedontopofspreading
- Scramblingisnotchangingthesignalbandwidth
- Indownlinkscramblingcodesareallocatedto thecells(sectors)innetworkplanningphase
 - Numberofscramblingcodesishigh=>codeplanning isatrivialtaskandcanbeautomated

Spreadingandscramblingsummary

	Spreadingcodes	Scramblingcodes	
Usage	UL:Separationofcontroland datafromthesameuser	UL:Separationof users	
	DL:Separationofconnections withinacell	DL:Separationofcells	
Length	UL:4-256chips DL:4-512chips	UL:38400chips= 10ms=framelength	
	Codelengthdefinessymbolrate	10ms=framelength	
Bandwidth	Increasestransmissionbandwidth	Noimpactto transmission bandwidth	

Importantchannels/uplink

- Uplinkdedicatedchannel
 - PhysicallayercontrolinformationinDedicatedPhy sical ControlChannel(DPCCH),spreadingfactor=256
 - DataiscarriedinDedicatedPhysicalDataChannels (DPDCH).Variablespreadingfactor
 - □ TherecanbemultipleDPDCHs butonlyoneDPCCH.

- Pilotbitsforchannelestimation
 - Alwayspresent
- TransmitPowerControl(TPC)bitsfordownlink powercontrol
 - Alwayspresent
- TransportFormatCombinationIndicator(TFCI)
 - Informreceiveraboutactivetransportchannels
- FeedbackBitInformation(FBI)
 - Presentonlywhendownlinktwo-antennaclosedloop transmitdiversityisapplied

UplinkDPDCHdatarates

- Dataratesinthetable achievedwith¹/₂ rate coding
- Parallelcodesnotused inpracticedueto reducedpoweramplifier efficiency
- Maximumratebelow500 kbps.
- Note:Inuplinkeachuser haveallspreadingcodes initsuse

Spreadingfactor	Userdatarate	
256	7.5kbps	
128	15kbps	
64	30kbps	
32	60kbps	
16	120kbps	
8	240kbps	
4	480kbps	
4,6parallel codes	2.8Mbps	

- Downlinkdedicatedchannel
 - DownlinkcontrolinformationiscarriedinDedicate d
 PhysicalControlChannel(DPCCH)
 - DownlinkdataiscarriedinDedicatedPhysicalData Channel(DPDCH)
 - Spreadingfactordependsontheservice

1 Radio frame = 15 time slots: 10 ms

Importantchannels/downlink

- CommonPilotChannel(CPICH)
 - CPICHaidchannelestimationattheterminal
 - □ Spreadingfactor=256
- (*) I Terminalmakeshandoverandcellselectionmeasurem ents fromCPICH=>CPICH shouldbeheardeverywhereinth e cell
- (*) CellcoverageandloadcanbeadjustedthroughCPIC H
 - IfCPICHpowerisreducedpartoftheterminalswil Ihand overtoadjacentcells
 - Synchronizationchannel(SCH)
- (*) Synchronizationchannelisneededforcellsearch
 - □ Spreadingfactor=256

- PrimaryCommonControlPhysicalChannel (PrimaryCCPCH)
 - Carrybroadcastchannelandallterminalsinthe systemshouldbeabletoreceiveit.
- (*) IfCCPCHdecodingfailsthenterminalcannotaccess tothesystem=>CCPCHtransmissionpowerhigh.
 - Nopilotbits, channelestimation done from CPICH which is transmitted with same antennaradiation pattern
 - Spreadingfactor=256,½ ratecoding

DownlinkDPDCHdatarates

- Dataratesinthetable achievedwith½ rate coding
- Indownlinkallusers sharethespreading codes=>numberof orthogonalcodesdefines ahardlimitforcell capacity
- Partofthespreading codesarereservedfor controlchannels

Spreadingfactor	Userdatarate	
512	1-3kbps	
256	6-12kbps	
128	20-24kbps	
64	45kbps	
32	105kbps	
16	215kbps	
8	456kbps	
4	936kbps	
4,3parallel codes	2.8Mbps	

 Fromnetworkplanningperspectiveitis importanttokeepinmindthatcontrolchannels takepartoftheDLpower

		Percentage of	
		the maximum	Power allocation
	Activity	base station	with 20 W.
	[%]	power	maximum power
		[%]	[W]
Common pilot channel			
(CPICH)	100	10	2.0
Primary synchronization			
channel (SCH)	10	6	1.2
Secondary synchronization			
channel (SCH)	10	4	0.8
Primary common control			
physical channel (CCPCH)	90	5	1.0
Total common channels	-	~ 15	~ 3

Radioresourcemanagement

- RadioResourceManagement(RRM)is elementarypartofWCDMA.
- RRMisresponsibleforefficientutilizationofthe airinterfaceresourcesitisneededto
 - GuaranteeQualityofService(QoS)
 - Maintaintheplannedcoveragearea
 - Optimize the cell capacity
- TheimportanceofRRMismostlyduetothe featuresoftheUMTSsystem;interference limitednatureandadaptiveservices

RRMalgorithms

FamilyofRRMalgorithms:

- Powercontrol
 - Fastpowercontrol(NodeB,UE)
 - Outerlooppowercontrol(RNC)
- Handovercontrol(RNC)
- Admissioncontrol(RNC)
- Loadcontrol(RNC)
 - Fastloadcontrol(NodeB)
- Packetscheduling(RNC)

Powercontrol

- Objectives
 - Maintainthelinkqualityinuplinkandindownlink bycontrolling thetransmissionpowers
 - Preventsnear-fareffect
 - Minimiseeffectsoffastandslowfading
 - Minimisesinterferenceinnetwork
- Accuracyofthepowercontrolisimportant
 - Notime-frequencyseparationofusers,allusethe sa bandwidth
 - Inaccuracyinpowercontrolimmediatelyliftsthen interferencelevel,whichcorrespondinglylowersth
 - Duetousersmobilitythespeedofpowercontrolis criticalissue

same

etwork's ecapacity alsoa

Near-farprobleminuplink

- TherecanlargepathlossdifferencebetweenUE1(c ell centre)andUE2(celledge)
- IfbothUEsaretransmittingwiththesamepowerth enUE1 willblockUE2(andothercelledgeuserstoo)
- PowercontrolwilldrivetransmissionpowersofUE1 andUE2 totheminimumlevelthatisrequiredtomeetQoS
- InNodeBreceivedpowersfromUE1andUE2willbe the sameforsameservices

- PowerControlonthe commonchannels ensuresthattheir coverageissufficient bothtosetupUE-originating andUE-terminatingcalls.
- PowerControlonthe dedicatedchannels ensuresanagreed qualityof connectionintermsofBlockErrorRate(BLER),while minimizingtheimpact onotherUEs.
- UplinkPowerControl increasesthemaximumnumberof connectionsthatcan beservedwiththerequiredQua lityofService (QoS),whilereducingboththe interferenceandthe totalamountof radiatedpowerinthenetwork.
- DownlinkPowerControl minimizesthetransmissionpowerofthe NodeB and compensatesforchannelfading.Minimizing transmitted powermaximizesthedownlinkcapacity.

Mainpowercontrolapproaches

- □ Fastpowercontrol:
 - Aimistocompensatetheeffectoffastfading
 - Gainfromfastpowercontrolislargestforslowly movingUEs andwhenfadingisflat,i.e.thereis multi-pathdiversity
 - Fastpowercontroldrivesthereceivedpowertoa targetSIR.Thisvalueisdiscussedmorecloselyin connectionwithdimensioning.
- Outerlooppowercontrol
 - AdjustthetargetSIRaccordingtoserviceQoS.

- ThegoalistocontrolthetargetSIR inordertore main thewantedQoS withminimumtransmitpower
- ThetargetBLERisdefinedwiththeadmissioncontr ol algorithm
- TheuplinkalgorithmiscontrolledinRNCanddownl ink algorithminUE
- Updatefrequencyfrom10Hzupto100Hz
- Outerlooppowercontrolwillraiseorlowertheta rget SIRaccordingtostepsize,whichisdefinedbyrad io networkplanning.
- Theequipments' performancedefinestheminimum valuefortargetSIR

- Implemented inUEtosetSIRtargetonDL traffic channels
- Quality target:BLERofeach transportchannel assetby RNC
- Admission controldetermines thevalue of DL BLER.
- NoSIRtargetchangeif NodeB powerreaches maximum or network congestion occurs.

Fastpowercontrol

- Idealfastpowercontrolinvertthechannel
 - Inpracticepowercontrolaccuracyisreducedby feedbackerrors,
 - Betterfigure, PCheadroometc

Fastfadingchannel

Transmittedpower

- Update rate 1.5kHz=>fastenough totrack and compensate fastfading up toxkm/hmobilespeed
- If receivedSIR>targetSIRinNodeB=>UEis commanded todecrease its transmitpower.Similarly UE iscommanded toincrease its transmissionpowerif receivedSIR<targetSIR</p>
- Network planning defines thestep size.Usual step size values are between 0.5dBand2dB.
- Softhandover:
 - UEcan receive contradictory PCcommands from different nodeBs
 - UEtransmissionpowerwill be increased if all nodeBs as k forit anddecreased if atleast one nodeBdemands it

Similar asDLfastPC:

- UEmeasures SIRonDLDPCCHduring thepilot period
- UEmaintainstheQoS bysendingfastpowercontrol commands(TPCbits)requestingpower adjustment
- Poweroffsets can be used inDLinordertoimprove controlreliability.Offsets are network parameters that can be setinplanning phase

