

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY

Cellular NetworkPlanning and Optimization Part VII:WCDMARRM

JyriHämäläinen, Communications andNetworking Department, TKK,1.2.2008

QualityofService(QoS)

RadioAccessBearer

- MaintaskoftheUTRANistocreateandmaintainRA
 Bfor communicationbetweenUEandCN.
- RABisbuildupinordertogiveforCNelementsan illusion aboutfixedcommunicationpathtoUE.
- Thenetworkbuildsuptheend-to-endQoSconnection from smallpieces, which compose a complete chain withou t bottlenecks
- ThesepiecesarecalledBearers
- Whentheconnectionissetup,thenetworkelements negotiatetheQoSrequirementsofthebearerssetu p betweenthem
- Theresultisacompromise, inwhich the QoSrequir ements and network's capacity is taken into account

UMTSQoSClasses

TrafficClass	Exampleapplication
Conversational class	Speechandvideocalls
Streamingclass	Real-timestreamingvideo
Interactiveclass	Websurfing
Backgroundclass	Filedownloading,e-mails

UMTSQoSClasses

TrafficClass	Properties
Conversationalclass	Minimumfixeddelay,nobuffering, symmetrictraffic,guaranteedbitrate
Streamingclass	Minimumvariabledelay,buffering allowed,asymmetrictraffic, guaranteedbitrate
Interactiveclass	Moderatevariabledelay,buffering allowed,asymmetrictraffic,no guaranteedbitrate
Backgroundclass	Bigvariabledelay,bufferingallowed, asymmetrictraffic,noguaranteedbit rate

UMTSQoSParameters

Parameter	Explanation
Maximumbitrate	Definesthemaximumbitratewhen deliveringinformationbetweenend pointsofUMTSbearer(<2Mbps)
Guaranteedbitrate	DefinesthebitratethattheUMTS bearermustcarrybetweenitsend points
Allowedtransfer delay	Setthelimitsfordelay(>80ms)
QoSnegotiable	QoSofsomeservicesarenot negotiable(speech),packetdata servicesadmitvariousQoSclasses

QoSinUMTS

- Inearly UMTSRelease99all conversational andstreaming class traffic wereofferedovertheCS bearer
 - Voice
 - RTmultimedia(e.gvideotelephony)
- Inearly Release99only Interactive andbackground class traffic utilisises thePSbearer
- Release4capable networks introduce some streaming class traffic onPSbearer aswell
- Release5brings along afull portfolio ofPSbearers also utilised forconversational traffic

QoS inUMTS

- TheQoSovertheairinterfaceisimplementedbyma radiobearerwithatransportchannelwhoseformat setdefinesthe **QoSparameters**
- Themappingisperformedduringtheestablishmento
- RNCperformsthemappingofRABcharacteristicsto requirements(vendor dependent)
- Exampleofmappingforwebservice, which belongst class **Parameters** InteractiveClass RadioResourcemapping

otheinteractive

actualresource

tchingeach

ftheRAB

Maximumbitrate	128kbps	SF=16
MaximumSDUsize	1500	MaptoTransportformats
ResidualBER	10^-6	1/3turboencoder
TransferDelay	NA	Interleaver=40or80msec
Guaranteedbitrate	64kbps	SF=16
Deliveryorder	yes	UseAcknowledgedRLC
		Setappropriatethresholdforouter
SDUErrorRatio	1%	looppowercontrol
DeliveryoferroneousSDU	No	UseAcknowledgedRLC

- Operators can define thewanted QoS profile (in HLR)persubscriber
- Users can be categorised (QoS differentiation)for various tariffing schemes
- Traffic handling priorities can be set(THP)

	Business	Remoteoffice	Basicfreetime
Trafficclass	Allfourallowed	Allfourallowed	Onlyconverational (voicecalls)and background
Maxbitrate	400kbps	800kbps	64kbps
Guaranteedbitrate	384kbps	64kbps	12kbps
AllowedTHPs	THP1(e.g.fore-mail downloads)	THP2(e.g.forfile transfer)	THP3

QoS inUMTS

Radioresourcemanagement

- RadioResourceManagement(RRM)is elementarypartofWCDMA.
- RRMisresponsibleforefficientutilizationofthe airinterfaceresourcesitisneededto
 - GuaranteeQualityofService(QoS)
 - Maintaintheplannedcoveragearea
 - Optimize the cell capacity
- TheimportanceofRRMismostlyduetothe featuresoftheUMTSsystem;interference limitednatureandadaptiveservices

Introduction toRRM/objectives

Objectives of RRM

- Ensure planned coverage for each service
- Ensure required connection quality
- Ensure planned max blocking
- Optimise theusage ofsystem capacity resources

Cellcoverage

Cellcapacity

Introduction toRRM/Functions

RRMalgorithms

FamilyofRRMalgorithms:

- Powercontrol
 - Fastpowercontrol(NodeB,UE)
 - Outerlooppowercontrol(RNC)
- Handovercontrol(RNC)
- Admissioncontrol(RNC)
- Loadcontrol(RNC)
 - Fastloadcontrol(NodeB)
- Packetscheduling(RNC)

Powercontrol

Powercontrol

Objectives

Maintain thelinkqualityinuplinkandindownlink bycor thetransmissionpowers

bycontrolling

- Preventsnear-fareffect
- Minimiseeffectsoffastandslowfading
- Minimisesinterferenceinnetwork
- Accuracyofthepowercontrolisimportant
 - Notime-frequencyseparationofusers,allusethe same bandwidth
 - Inaccuracyinpowercontrolimmediatelyliftsthen interferencelevel,whichcorrespondinglylowersth
 - Duetousersmobilitythespeedofpowercontrolis criticalissue
- etwork's ecapacity alsoa

Near-farprobleminuplink

- TherecanlargepathlossdifferencebetweenUE1(c ell centre)andUE2(celledge)
- IfbothUEsaretransmittingwiththesamepowerth enUE1 willblockUE2(andothercelledgeuserstoo)
- PowercontrolwilldrivetransmissionpowersofUE1 andUE2 totheminimumlevelthatisrequiredtomeetQoS
- InNodeBreceivedpowersfromUE1andUE2willbe the sameforsameservices

- PowerControlonthe commonchannels ensuresthattheir coverageissufficient bothtosetupUE-originating andUE-terminatingcalls.
- PowerControlonthe dedicatedchannels ensuresanagreed qualityof connectionintermsofBlockErrorRate(BLER),while minimizingtheimpact onotherUEs.
- UplinkPowerControl increasesthemaximumnumberof connectionsthatcan beservedwiththerequiredQua lityofService (QoS),whilereducingboththe interferenceandthe totalamountof radiatedpowerinthenetwork.
- DownlinkPowerControl minimizesthetransmissionpowerofthe NodeB and compensatesforchannelfading.Minimizing transmitted powermaximizesthedownlinkcapacity.

Mainpowercontrolapproaches

- Fastpowercontrol:
 - Aimistocompensatetheeffectoffastfading
 - Gainfromfastpowercontrolislargestforslowly movingUEsandwhenfadingisflat,i.e.thereis multi-pathdiversity
 - Fastpowercontroldrivesthereceivedpowertoa targetSIR.Thisvalueisdiscussedmorecloselyin connectionwithdimensioning.
- Outerlooppowercontrol
 - AdjustthetargetSIRaccordingtoserviceQoS.

- ThegoalistocontrolthetargetSIR inordertosu stain thewantedQoSwithminimumtransmitpower
- ThetargetBLERisdefinedwiththeadmissioncontr ol algorithm
- TheuplinkalgorithmiscontrolledinRNC
- Updatefrequencyfrom10Hzupto100Hz
- Outerlooppowercontrolwillraiseorlowertheta rget SIRaccordingtostepsize,whichisdefinedbyrad io networkplanning.
- Theequipments' performancedefinestheminimum valuefortargetSIR

- Implemented inUEtosetSIRtargetonDL traffic channels
- Quality target:BLERofeach transportchannel assetby RNC
- Admission controldetermines thevalue of DL BLER.
- NoSIRtargetchangeif NodeB powerreaches maximum or network congestion occurs.

TransmitPowerControl(TPC)

- Idealfastpowercontrolinvertthechannel
 - Inpracticepowercontrolaccuracyisreducedby feedbackerrors,
 - Betterfigure, PCheadroometc

Note: Itisusualtotalkabout'fastpowercontrol tomitigate fastfading. Transmitpowercontrolis

whenpowercontrolisbuildup WCDMAspecificterm

- Update rate 1.5kHz=>fastenough totrack and compensate fastfading up toxkm/hmobilespeed
- If receivedSIR>targetSIRinNodeB=>UEis commanded todecrease its transmitpower.Similarly UE iscommanded toincrease its transmissionpowerif receivedSIR<targetSIR</p>
- Network planning defines thestep size.Usual step size values are between 0.5dBand2dB.
- Softhandover:
 - UEcan receive contradictory PCcommands from different nodeBs
 - UEtransmissionpowerwill be increased if all nodeB's a sk for it anddecreased if atleast one nodeBdemands it

DownlinkTPC

Similar asULTPC:

- UEmeasures SIRonDLDPCCHduring thepilot period (or use CPICH)
- UEmaintainstheQoSbysendingfastpowercontrol commands(TPCbits)requestingpower adjustment
- Poweroffsets can be used inDLinordertoimprove controlreliability.Offsets are network parameters that can be setinplanning phase

TPCcharacters

- Maininterference migitation means inUMTS
- TPC(1500Hz)isable tofollow fast fading up to~50km/h MSspeed,after that thefading dips are averaged out
- Inhigh MSspeeds TPCcan have even negative impact
- TPClowers therequired Eb/No,not so much tx-powers dire ctly
- Concerns inpractise:

•InSHO,DLpowers can drift apart due totheinaccurate reception of uplink PC commands \rightarrow Degraded SHOperformance incasedrift prevention not working •InSHO,DLPCcommands cannot be combined inRAKE(becau se they contain different information).Databits however can be combined \rightarrow Worse reability forPCcommands.

=>Can be improved by allocating more power toCCHs

•Building corners intheurban areas

• Average TPCheadroom (4dB)must be assumed topathloss.

Handovercontrol

Handover types inWCDMA

WCDMAHandover control

HardHO (HHO)

- AlltheoldradiolinksofanUEarereleasedbefor ethenewradiolinks areestablished.
- Real time bearers:shortdisconnectionintransmissio n.
- Non real time bearers:HHOislossless.
- Shared &commonchannels used forhard handover (cell res election)
 SoftHO(SHO)

SoftHO(SHO).

- MSalwayskeepsatleastoneradiolinktoUTRAN
 - Soft HO:MSissimultaneouslycontrolledbytwoormore cellsbelongingto diffetrentBTSofthesameRNCortodifferentRNC.
 - Softer HO.MSiscontrolledbyatleasttwocellsunderon eBTS.
 - Dedicated channels (Cell_DCH state) used forSHO
- HandovercanbeeithernetworkorUEinitiated
 - ServingRNCmakesthedecisionsinbothcases

WCDMAHandover control

Hard handovers

- Intra&Inter-frequencyHHO's
- Usuallytriggeredtomaintainmobility
- NotrecommendedinWCDMAunlessthereisanurgent need, because
 - HardHOincreasesinterferenceeasily,sincethere al-time user is disconnectedtemporarilyandtheusedpowermust bereevalueted
 - This decreases thecapacity inheavytraffic situations andcan worsen thenear-far effect
- Absenceoflur(connectionbetweenRNC's)willcaus ehardHOs
- CompressedmodeusedinHOsbetweencarriersandsy stems
 - IncompressedmodeUEstopULtransmissionforfew milliseconds withinaradioframe(10ms)inordertoenablemeas urementsof differentcarriers/systems

- IFHOcanbeusedinplanningto
 - □ providecoverage(micro → macrocell)
 - providecapacity(reducecellloading)
- 2nd carriercanbeenabledoncellbasis
- NotsostraightforwardtoperforminUEduetoneed of compressedmode
- Most Network vendors' equipmentsupportsIFHO
- IFHOisgenerallyseenasameansofoptimisation as the traffic evolves, but can be used also e.g.toprovide indoor coverage

- SHOhelps avoid near-far effect forreal-time connection
- Forhigh mobility users shadow fading +(slow)hard handovers would create near-far situations
- SHOisanessential interference mitigation tool in WCDMA

Softer/SoftHandover

UPLINK:

- More complex situation than inDL
- During <u>softer HO</u>, same procedure innode B's RAKEthan inDLcase
 Produced gain 1-3dB
 - Better performance interms ofstrenght differences,si nce thesignals come from thesame source
- During <u>SoftHO</u>, the combining of signals is done in the RNC
 - Selection combining performed forbaseband signal
 - Based onselecting the frame with better FER oBER
 - Better frame send tobe used inopen loop PC(target SIRes timation)
 - Gain achieved through more stable UEtx-powers (1-2dB)
 - \rightarrow Noactual gain totheradiolink

ThecellsinaWCDMARANare,fromUEpointof view, dividedin differentmutual excludingsetsdefinedby3GPP:

Active Set

□ Thecells involved insofthandover and measured by the U E

Monitored Set

- Thecells only measured by theUEandnot part of theAct ive Set.The monitored setcan consist of intra-frequency, Inter-Fre quency and Inter-RAT cells
- Thecells measured by theUEare thesum of theActive Se tandthe Monitored Set.
- Thenumber ofIntra-frequency cells intheMonitored Se t+theActive Setcells islimited by 3GPPto32.
- Thenumber ofInter-Frequency cells intheMonitored se tislimited to 32.
- Thenumber ofInter-RAT cells intheMonitored setisl imited to32.

Active Set

- AsUEmoves, node Bs are continuously added to and remove of from the active set. When added, they are also updated to the neighbor cell list.
- UEmeasures the *monitored set* ofcells andHandover Control evaluates if any node Bshould be added to,removed from or replaced int heactive set

Maximum Active SetSize parameter

- isused todetermine themaximum allowed number of SHO connections (varies between 1-5,typical default 3)
 - Too high value decreases capacity (signalling increases andmultiple connections occur too often)
 - Too low value degreases theSHOperformance (best candidat e cells may be excluded insome situations)

- Thehandover measurements forIntra-Frequency HOare ba sed on <u>P-CPICHEc/Io</u>
- Ec/loisthereceivedsignalcodepowerdividedby thetotalreceived power.Itiscalculatedfromsignal before thesignalde-spreading operationwhileEb/Noiscalculated after de-spreading.
 - Ec/lo can be be determined forthesignal "intheair"
- Eb/Nodepends ontheservice(bitrate,CS/PS,receivingend)and Ec/loisserviceindependent
- Theaccuracy of the Ec/lo measurements is essential for HO performance
 - Depends onfiltering lenght andmobilespeed
 - Filter length forslowly moving &stationary UE's should b e just longenough toavoid Fast Fading errors
 - □ Too longfilter length forwill cause HOdelays tofast mo ving UE

Event based triggered measurements and reporting

- Basicreporting events 1A,1Band1C(Ref. 3GPP)
 - □ 1A:Primary CPICHenters thereporting range
 - 1B:P-CPICHleaves thereporting range
 - IC:Non-active P-CPICHbecomes better than anactive P-CPICH
 - □ 1D:Change ofcurrent best cell with newP-CPICH

Handover decision

 Done by RNCbased onmeasurements andavailable resources

 Pictureofevents 1Aand1B.Example:Theterminals endsanevent1A reporttotheRNC,ifthenewcellbelongstothem onitoredcellslistand ActiveSetisnotfull.Thennewcellisproposedt obeaddedto theActive Set.IftheActiveSetisfull,thecellispropose dasareplacement of the worstcellintheActiveSet(1C)

SoftHandover

46

Inter-FrequencyHO(IFHO)

Inter-FrequencyHandoverisahardhandoverwheret heUEis orderedbythe networktotunetoanotherfrequency.

- When Inter-Frequency HOis considered, first theUE measures theconditions tostart Compressed Mode
 - Usually Ec/lo ofcurrent carrier
 - Events 2dand2fdefined for IFHO
 - Timetotrigger used

SHOmargin inplanning tools

- Some 3Gplanning tools use one singleSHOplanning paramete r (=SHOmargin/SHOgain)
- Default Value varies between 2and6dB
- Value forthis parameter should be defined as:

Handover margin =
$$\frac{\text{Reporting range1a} + \text{Reporting range1b}}{2}$$

HOrelatedtopicsinnetworkplanning

- Networktopology:Howsitesarelocatedrelative toeachother,howmanysectors/site
- NodeBantennaradiationpatterns
 - Overlappingpatterns=>moresofterHOs
 - Antennatilt=>NumberofpotentialNodeB'sinAct ive Set
- Pathlossandshadowfadingcharacteristics
- TheaveragenumberofNodeB'sthataUEcan synchroniseto
- HOparameteradjustmentsispartofthenetwork optimization

AdmissionandCongestioncontrol

Congestion and Admission Control

- Congestion/Load Control's generalresponsibility isto remain thenetwork inastable state andprevent overloading
- Congestion/Load control isinclose co-operation with functions ofadmission control andpacket scheduler LoadcontroloperatesinRNC:

Admission andCongestion Control

Admissioncontrol

- Ifairinterfaceloadingisallowedtoincreasetoo muchthe coverageofthecellwillbereducedbelowtheplan ned value.
- Admission control decides whether toaccept theterminal 's request fornewradioaccess bearer by calculating how much interference newbearer would create tothecell in both ULandDL

Congestioncontrol

- Responsibleofreturningthenetworkbackintodesi red targetloadincaseofoverload
- Targetloadissetinnetworkplanningandoverload should beanexceptionalsituation

Admission Control

Congestion control

- Incase of congestion the use of resources are scaled do wn toreach normal loading status
- Thepriorisation andorder of congestion control action s isbased on vendor algorithms.
- Actions that can be carried outinorder todecrease thel oad
 - Deny power control commands received from UE
 - □ Reduce theULEb/Notarget used inULfast power control
 - □ Reduce thethroughput ofpacket datatraffic
 - □ Handover toother WCDMAcarrier or toGSM
 - Decrease bit rates inreal time services
 - Drop low priority datacalls

- Determines theavailableradioresourcesforNRT radi obearers
- SharetheavailableradioresourcesbetweenNRT radi obearers.
- MonitortheallocationsforNRT radiobearers.
- Initiatetheswitchingbetweencommon,sharedandd edicated channelswhennecessary.
- Monitorthesystemloading.
- PerformloadcontrolactionsfortheNRT radiobeare rswhen necessary.

Packet Scheduler

- Capacitycan be divided between non-controllableandcontrollable traffic
- Loadcausedbyrealtimetraffic, interferencefromothercellusers andnoisetogetheriscalled noncontrollableload
- Thepartoftheavailablecapacity thatisnotusedfornon-controllable loadcan beusedforNRT radio bearersonbesteffortbasis (= controllable load).
- PS isimplementedfordedicated (DCH)aswellas commoncontrol transportchannels(RACH/FACH).
- PStakes care offilling the controllable capacity with NRT traffic

- Theamountofscheduledcapacity dependson:
 - UEandBTScapabilities,
 - thecurrentloadinthecell,
 - theavailabilityofphysicalresources.

Packet Scheduler

- Fordimensioning purposes radio network planning can define packet access features perservice,e.g.by next parameters:
- Amount ofpacket bursts persession
- Reading time between bursts
- Size ofpackets
- Arrival rate packets
- Amount ofpackets perburst
- Number of retransmission

Control summary

Admission	Congestion	Packet Scheduler Interference	
control	control		Maximum leyel
	Overloadactions	Decreasebitrates andNRTBearers are dropped	Threshold
Nonewbearersare admitted	Preventiveload controlactions	Decreasebitrates	Target level for interference+offset
Nonewbearersare admitted	Noactions	NRTIoadisnot increased,butbitrate changesareallowed	Target level for
NewRTbearersare admittednormally	Noactions	NRTbearersare increased	interference
			Load