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Receivers for interfering symbols

34

Signal space receiver

F Estimate transmitted signal x from received samples y
using signal model

y =Hx+ n

I H is assumed to be known (by estimation).
F Linear receivers

I use linear algebra to construct symbol estimates x̂m
I bit decisions (soft or hard) made by quantizing x̂m

F non-linear receivers
I use discreteness of x to construct the symbol estimates
I iterative receivers: iterated (linear algebra + decsions)
I approximative Maximum likelihood sequence estimators
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MAP and ML

F The optimum receiver finds Maximum A Posteriori
(MAP) probability:
I M alternatives for x: {xm}Mm=1
I MAP : most probable xm is

x̂ = argmax
m
P (xm|y)

F Maximum Likelihood and MAP
I Bayes rule: P (xm|y) = p(y|xm)P(xm)

p(y)

I If all signals equiprobable: P (xm) = 1/M

argmax
m
P (xm|y) = argmax

m
p(y|xm)

I ML: maximum likelihood xm is

x̂ = argmax
m
p(y|xm)
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Maximum Likelihood Metric

F for vector signal model

y = Hx+ n

p(n) =
1

(πN0)Nr
e−|n|

2/N0

p(y|x,n) = δ2Nr (y −Hx− n)
p(y|x) =

Z
CNr

d2Nrn p(y|x,n) p(n)

⇒ p(y|x) =
1

(πN0)Nr
e−|y−Hx|

2/N0

F ML detection metric: MML = |y −Hx |2
F ML decision: argminmMML(xm)

I exhaustive search over all xm
I often prohibitively complex
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Linear Receivers

F Set of linear equations y = Hx+ n
1. Solve esimate x̂ from this set using linear algebra
2. decide symbol based on x̂

F Apply linear filter (matrix) F to y
F rows of filter: FH = [f1 f2 . . . fNt ]
F Decision metric decouples

MF = |x− Fy|2 =
X
n

|xn − fHn y|2

I x̂n is the symbol closest to f
H
n y

38

When is a linear receiver the optimum receiver?

1. If H singular, x̂ cannot be solved from y = Hx+ n even if n known
⇒ linear filter may be optimal only if H non-singular

2. A receiver is optimal if decision metric is equivalent to ML metric:

aMF =MML

F for all possible x,y,H
F proportionality constant a may depend on H,y but not on x

⇒ F = H−1

⇒ a (Hx− y)H ¡H−1¢HH−1 (Hx− y) = |Hx− y|2
⇒ HHH = aI

F Thus linear receiver is the optimum receiver only if
the channel is orthogonal, H proportional to a unitary matrix.

F Orthogonal signaling, no interference.
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Matched Filter

F Matched Filter (MF) is one of the simplest linear receivers
F combine coherently all samples according to the symbol of interest

F =
¡
diag

¡
HHH

¢¢−1
HH

fn =
¡
hHnhn

¢−1
hn

I hn is n:th column of H
I The inverses are just a scaling of the decision surfaces

F Example: 2× 2 channel∙
y1
y2

¸
=

∙
h11 h12
h21 h22

¸∙
x1
x2

¸
+

∙
n1
n2

¸
I MF estimate is

x̂1 =
h∗11y1 + h

∗
21y2¡|h11|2 + |h21|2¢ = x1 + (h∗11h12 + h

∗
21h22)x2¡|h11|2 + |h21|2¢ + filtered noise
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MRC filter

F MRC is similar to MF,
with additional reliability scaling

F Definition of Maximum Ratio Combining:
I diversity branches combined coherently
I combining weights selected to maxmize
post-combining SINR

I assuming noise + interference corrupting
branches uncorrelated

F optimum MRC weights will be solved below
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Optimum MRC weights I

F Rewrite signal model for receiving xk

y = hk xk +
X
j 6=k

hj xj + n| {z }
≡i

F the covariance of noise + interference is

E
©
i iH

ª
=

X
j 6=k

hj h
H
j +N0I

F for MRC i is approximated as uncorrelated interference:

E
©
ĩm ĩ∗l

ª
=

⎛⎝X
j 6=k

|hmj |2 +N0
⎞⎠ δml
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Optimum MRC weights II

F The filter is
fk = Ak hk

where Ak = diag[ak1 ak2 . . . akNt ] is a diagonal matrix of
real reliability weights

F signal power after filtering is

Sk =
¯̄
hHkAkhk

¯̄2
=

ÃX
m

akm |hmk|2
!2

F the (Approximative) noise plus interference power is

Ik = hHkAk E
n
ĩ ĩH

o
Akhk

=
X
m

a2km|hmk|2
⎛⎝X
j 6=k

|hmj |2 +N0
⎞⎠
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Optimum MRC weights III

F The set of reliability weights may be scaled with any number
without changing SINR

F choose scale so that signal power Sk = μ2

I minimize interference + noise power subject to constraintX
m

akm |hmk|2 = μ

I Lagrangian optimization:

L = Ik + 2λ
Ã
μ−

X
m

akm |hmk|2
!

¨ λ is a Lagrange multiplier
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Optimum MRC weights IV

F Find minima of L

dL
dakm

= 2akm|hmk|2
⎛⎝X
j 6=k

|hmj |2 +N0
⎞⎠− 2λ|hmk|2 = 0

⇒ akm =
λP

j 6=k |hmj |2 +N0
F MRC weights are scaled by the interference + noise power per branch
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MRC example

F 2× 2 MF example above
F diversity branches

y1 = h11 x1 + h12 x2 + n1
y2 = h21 x1 + h22 x2 + n2

F MF
I coherent combining with weights h∗11 and h

∗
21

I SIR for symbol x1 is (omitting N0)

SIR1 =

¯̄̄̄
¯ |h11|2 + |h21|2h∗11h12 + h

∗
21h22

¯̄̄̄
¯
2

F this is not MRC optimum
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MRC example II

F when receiving x1, interference powers in y1 and y2 are

E
©
ĩ1 ĩ
∗
1

ª
= |h12|2 +N0

E
©
ĩ2 ĩ
∗
2

ª
= |h22|2 +N0

F choosing λ = |h12|2 +N0, MRC reliability weights are

a11 = 1

a12 =
|h12|2 +N0
|h22|2 +N0 ≡ a

F full MRC coherent combining weights h∗11 and a h
∗
21:

SIR1 =

¯̄̄̄
¯ |h11|2 + a |h21|2h∗11h12 + a h

∗
21h22

¯̄̄̄
¯
2
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MRC example III

F for example if channel is near orthogonal

h11 = h22 = 10, h12 = h21 = 1

F plain MF gives

SIRMF1 =

µ
101

20

¶2
≈ 25

F MRC gives

SIRMRC1 =

µ
100 + a

10 + 10a

¶2
=

µ
100.01

10.1

¶2
≈ 100

F NOTE: MRC does not maximize SINR
I MRC: best SINR assuming uncorrelated noise + interference
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MRC & MF terminology

In textbooks, typically no distinction of the kind above is 
done between MRC & MF

MF/MRC for coloured noise is typically not treated
A matched filter is by definition a filter which maximizes 
SINR assuming uncorrelated noise, be it white or 
coloured

see e.g. Benedetto-Biglieri, excercise 2.26, p. 102
MF vs MRC as used here is slight misuse of terminology

in signal space, MF is by definition MRC, even with coloured 
noise
white-noise approximated MF or white-noise approximated MRC 
would be more accuate

For conciseness of expression, MF and MRC as defined 
above will be used below
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Zero Forcing

F Why not solve x directly form y = Hx+ n, forgetting the noise?

x̂ = H−1y

F If H is singular, use Moore-Penrose pseudo-inverse:

x̂ =
¡
HHH

¢−1
HH y

I note: if H non-singular, we have³
HHH

´−1
HH =H−1

³
HH

´−1
HH = H−1

F ZF symbol estimate
x̂ = x+ coloured noise

I all ISI has been forced to zero
I noise is coloured (if channel not orthogonal)
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Minimum Mean Square Estimator (MMSE)

First calculate some covariance matrices

E
©
yxH

ª
= E

©
(Hx+ n)xH

ª
= H E

©
xxH

ª
= H

E
©
yyH

ª
= E

©
(Hx+ n)

¡
xHHH + nH

¢ª
= H E

©
xxH

ª
HH + E

©
nnH

ª
= HHH +N0I
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MMSE II

F The Mean Square Error

E = E
©|x− Fy|2ª = Tr E

©
(x− Fy) ¡xH − yHFH¢ª

= Tr
£
E
©
xxH

ª− 2Re £FE©yxHª¤+ F E©yyHªFH¤
= Tr

£
I− 2Re [FH] +F ¡

HHH +N0I
¢
FH
¤

F Find extrema by differentiating w.r.t. the elements of F:

dE
dF

= −2HH + 2F
¡
HHH +N0I

¢
F Solve for extremum filter matrix:

FMMSE = H
H
¡
HHH +N0I

¢−1
F this filter minimizes the MSE
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MMSE III

F To see difference of MMSE and ZF, use matrix inversion lemma

V
¡
A−1 +VVH

¢−1
=
¡
I+VHAV

¢−1
VHA

F MMSE is ZF regularized by noise term:

FMMSE =
¡
HHH+N0I

¢−1
HH

I For small N0, MMSE becomes ZF
I For large N0, MMSE becomes MF (up to scaling)
I ZF and MMSE are ML if channel orthogonal

F if non-white noise , E
©
nnH

ª
= C:

FMMSE =H
H
¡
HHH +C

¢−1
=
¡
HHC−1H+ I

¢−1
HHC−1



53

SINR analysis of linear receivers

54

SINR for generic linear receiver

F For performance analysis, post-processing SINR after
linear receiver may be calculated

F possible residual ISI, and possibly coloured noise
F any linear receiver: FH = [f1 f2 . . . fNt

]
F filter output for symbol k is

zk = fHk H x + fHk n

= fHk hk xk| {z }
wanted signal

+
X
j 6=k

fHk hj xj + fHk n| {z }
noise and interference

I Channel matrix is H =
£
h1 h2 . . . hNt

¤
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SINR for generic linear receiver II

F signal power after filtering is

Sk =
¯̄
fHk hk

¯̄2
F the noise plus interference power is

Ik =
X
j 6=k

¯̄
fHk hj

¯̄2
+N0 f

H
k fk

F post-processing SINR is

SINRk =
Sk
Ik
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MF, ZF, MMSE & Channel Covariance 

F MF, ZF and MMSE can be written in the form: F = LHH

I LH =
£
l1 l2 . . . lNt

¤
is a channel inversion matrix

F filtered signal is
z = LRx+LHHn ,

F the channel covariance matrix is

R =HHH

I diagonal elements: coherently combined (MF) channels of symbol xk

rkk =
³
HHH

´
kk
= hHk hk

I off-diagonal elements: ISI between xk and xj after MF

rkj =
³
HHH

´
kj
= hHk hj
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Signal and interference power: MF, ZF, MMSE

F Everything can be understood in terms of
inversion matrix and channel covariance

F Concentrate on symbol xk
F signal power after filtering

Sk =
¯̄
lHkH

Hhk
¯̄2
= |(LR)kk|2

F noise plus interference power is

Ik =
X
j 6=k

¯̄
lHkH

Hhj
¯̄2
+ N0 l

H
kR lk

=
X
j 6=k

¯̄̄
(LR)kj

¯̄̄2
+ N0

¡
LRLH

¢
kk
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Post-processing SINR

F Denote G = LR
F post-processing SINR:

SINRk =
|gkk|2P

j 6=k |gkj |2 +N0 (LRLH)kk
I first term in denominator comes from residual
post-processing self-interference

I second term is possibly enhanced and coloured noise
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Orthogonal channel, again

F H proportional to a unitary matrix
F channel covariance proportional to identity, R = rI

I rkk = r is the gain of the MRC combined channels

F optimum inversion matrix proportional to identity, L = l I
F SINR becomes

SINRk =
(lr)2

N0l2 r
=

r

N0
,

I no residual self-interference
I no noise enhancement
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SINR for Matched Filter

F inversion matrix inverts just the coherently
combined powers.

I linear scaling, no effect on SINR, omitted here:

L = I

F SINR becomes

SINRk =
r2kkP

j 6=k |rkj |2 + N0rkk
=

rkkP
j 6=k |rkj |2 /rkk + N0

I no self-interference is suppressed
I noise is not enhanced
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SINR for Zero Forcing

F inversion matrix inverts the channel covariance,

L = R−1

F G = I
F SINR becomes

SINRk =
1

N0 (R−1)kk
I self-interference vanishes completely
I noise is enhanced
I for an orthogonal channel we reproduce the result above
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Noise Enhancment by ZF, Example I

F Example: 2× 2 channel∙
y1
y2

¸
=

∙
h11 h12
h21 h22

¸ ∙
x1
x2

¸
+

∙
n1
n2

¸
F The channel covariance matrix is

R =

∙ |h11|2 + |h21|2 h∗11h12 + h
∗
21h22

h∗12h11 + h
∗
22h21 |h12|2 + |h22|2

¸
=

∙
r11 r12
r∗12 r22

¸
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Noise Enhancment by ZF, Example II

F The determinant of R is

detR = r11r22 − |r12|2

F the inverse of R is

R−1 =
1

detR

∙
r22 r∗12
r12 r11

¸
F the ZF SINR for symbol x1 is

SINR1 =
1

N0 (R−1)kk
=
detR

N0 r22
=

1

N0

Ã
r11 − |r12|

2

r22

!
≤ r11
N0

I equality only if r12 = 0, i.e. orthogonal channel
I comparing to contribution of N0 to SINR for MF,
noise is enhanced by ZF receiver
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SINR for MMSE
F inversion matrix inverts channel covariance up to regularization,

L = (R+N0I)
−1

F expression for SINR non-transparent
I both noise enhancement and some residual ISI

F In limit N0 → 0, Zero Forcing result reproduced
F In limit N0 →∞, we have

L→ 1

N0
I

I in expression for SINR, 1/N0 factors cancel
I MF result reproduced

F For orthogonal channel, we have

L = (r +N0)
−1I

G =
r

r +N0
I

I result for MF and ZF reproduced
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Performance Analysis

With the SINR values calculated above, performance of 
a detector can be analyzed
For example, if QPSK is used, the BER of a symbol with 
SINR_k is 

BER_k = Q(sqrt[SINR_k]) where 
Q(x) = ½ Erfc(x/Sqrt[2])

The average performance can be estimated by 
averaging the BERs
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Performance Example of linear detectors:
Multiuser Detection for UL CDMA
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UL CDMA

F There are U users simultaneously transmitting
F each user is using a spreading code cu of length SF “chips”

I SF is the spreading factor
I The spreading code is interpreted as a column vector

cu = [c1u c2u . . . cSF,u]
T

I elements of spreading code have norm 1
I usually cju ∈ {1, − 1} or cju ∈ {1, − 1, j , − j }

F the user is spreading the transmission of each symbol xu over SF chips
I example: SF = 4, one-tap channel hu, transmitted symbol xu
I received signal from the transmission of user u (noise omitted):

yu = hu

⎡⎢⎢⎣
c1u
c2u
c3u
c4u

⎤⎥⎥⎦ xu
68

UL CDMA, Power control

F Power Control (PC) is required in CDMA UL due to
near-far effect
I if no PC, signal from a user close to base station
drowns signal of a far-away user below
dynamic range of A/D converter

F Fast PC
I attempts to follow fast fading
I instantaneous received signal power of different
users ∼ equal

F Slow PC
I attempts to follow slow fading
I mitigate shadowing and path loss
I average received power of different users ∼ equal
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UL CDMA, simplification for MUD analysis

F in WCDMA, UL is asynchronous
I timing of spreading codes of different users
is not synchronized

I new symbol starts in different chip for different users
F the spreading sequences of different users
are not orthogonal
I spreading codes are pseudo-random sequences
I good cross-correlation and auto-correlation
properties

F to simplify analysis of effect of inter-user
interference on UL CDMA with and without
Multiuser Detection (MUD), we assume
synchronous UL with non-orthogonal spreading codes
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UL CDMA MUD, signal model
F signal model

y =

⎡⎢⎢⎢⎣
h1 0 · · · 0
0 h2 · · · 0

. . .

0 0 · · · hU

⎤⎥⎥⎥⎦ £ c1 c2 · · · cU
¤

| {z }
≡H

⎡⎢⎢⎢⎣
x1
x2
...
xU

⎤⎥⎥⎥⎦ + n

F elements of covariance matrix ruv = h
∗
uhv c

H
u cv

I interference between users u and v if spreading codes
not orthogonal

F when elements of spreading code normalized to 1:

cHu cu = SF

F coherently combined channel gain for user u is ruu = SF |hu|2
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CDMA SINR for Matched Filter receiver

F MF (= MRC!) for CDMA is the well-known RAKE receiver
F Matched filter SINR for user u is

SINRu =
ruuP

v 6=u |rvu|2 /ruu +N0
=

SF |hu|2P
v 6=u |hv |2 |cHv cu|2 /SF +N0

I we see the processing gain = SF against noise and interference
¨ wanted signal combines coherently
¨ noise and interference non-coherently

F for random sequences E
©
cHu cv

ª
=
√
SF for u 6= v

I can be used to approximate SINR when many interferers

F with perfect PC

SINRu =
SF

U − 1 + N0/|hu|2
I with increasing load, SINR decreases
I with “full load”, U = SF , SINR ≈ 0 dB
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UL CDMA MUD Performance Plots

F next pages: performance plots
I synchronous CDMA, SF = 16

¨ processing gain 10 log10(16) = 12.04 dB

I random complex spreading codes
I different number of users from U = 1 to U = 16
I MF, ZF and MMSE receivers
I slow and fast PC
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Typical plot

Number of users
MF is interference 

limited

At high SNR, ZF 
approaches MMSE

At low SNR, MF 
approaches 

MMSE, ZF worse 
than MF

Average received SNR of the users

Average BER 
of the users
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One & two users, slow PC

Single user: orthogonal 
system. All detectors 
same performance

Adding a user makes 
MF interference limited. 
practically no effect on 

ZF& MF

75

Half and full load (8 users, 16users), slow PC

Half load: 
MF error floor rises, 

small effect on ZF & MMSE, 
ZF at low SNR suboptimal

Full load: 
MF error floor rises, 
ZF very suboptimal,

4-6 dB loss to MMSE
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One & two users, fast PC

Single user: orthogonal 
system. Fast PC 

removed fading: AWGN 
performance in Rx 

SNR. Processing gain 
compared to AWGN 

~12 dB

Adding a user makes 
MF interference limited. 
practically no effect on 

ZF& MF
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Half and full load (8 users, 16users), fast PC

Half load: 
MF error floor rises, 

small effect on MMSE, 
ZF > 1dB suboptimal

Full load: 
MF error floor rises, 

ZF 5-6 dB suboptimal 
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Observations from UL CDMA MUD

ZF performs worst when system is most interference 
limited

this is a consequence of noise enhancement
when load is nearly full, channel covariance R has small 
eigenvalues

these lead to noise enhancement
regulating with N0 I in MMSE makes R better conditioned

less noise enhancement

UL CDMA is desinged to operate with high load, close to 
”pole capacity”
at high load, ZF performs badly
for MMSE, accurate estimate of N0, and R, required


