Receivers for interfering symbols
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Signal space receiver

Estimate transmitted signal x from received samples y
using signal model
y=Hx+n

» H is assumed to be known (by estimation).
Linear receivers
» use linear algebra to construct symbol estimates Z,,
» bit decisions (soft or hard) made by quantizing &,
non-linear receivers
» use discreteness of x to construct the symbol estimates
> iterative receivers: iterated (linear algebra + decsions)
» approximative Maximum likelihood sequence estimators
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MAP and ML

The optimum receiver finds Maximum A Posteriori
(MAP) probability:

» M alternatives for x: {xm}f\n/le

» MAP : most probable x,, is

x = argmax P(xmly)

Maximum Likelihood and MAP

. _ PYIxm)P(xm)
» Bayes rule: P(xn|y) = 0]

» If all signals equiprobable: P(x,,) = 1/M
arg max P(xm|y) = arg max p(y|xm)
» ML: maximum likelihood %, is

X = arg max p(y|xm)
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Maximum Likelihood Metric

for vector signal model

y = Hx+n
1 2
— —[n["/No
p(n) (TNg)™:
pylx,n) = 6*¥ (y —Hx—n)
p(ylx) = d*Nn p(y|x,n) p(n)
CNr
1 2
— —ly—Hx|*/No
:>p(y|X) (TFNo)Nre

ML detection metric: My, = |y — Hx |2
ML decision: arg min,, My (Xm)

» ezrhaustive search over all X,

» often prohibitively complex
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Linear Receivers

Set of linear equations y = Hx + n
1. Solve esimate X from this set using linear algebra
2. decide symbol based on x

Apply linear filter (matrix) F to y

rows of filter: F = [f; f5 ... fy,]

Decision metric decouples

Mp =[x =Fy> = |z, — £ily[?
n

» &, is the symbol closest to fily
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When is a linear receiver the optimum receiver?

1. If H singular, X cannot be solved from y = Hx + n even if n known
= linear filter may be optimal only if H non-singular
2. A receiver is optimal if decision metric is equivalent to ML metric:

aMp = My,

for all possible x,y, H
proportionality constant a may depend on H,y but not on x

= F=H"
=  aHx-y)TEH'H ! Hx-y) = [Hx -y
= H'H=d

Thus linear receiver is the optimum receiver only if

the channel is orthogonal, H proportional to a unitary matrix.
Orthogonal signaling, no interference.
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Matched Filter

Matched Filter (MF) is one of the simplest linear receivers
combine coherently all samples according to the symbol of interest
F — (diag(H"H))" HY
f, = (bh,) ',
» h, is n:th column of H

» The inverses are just a scaling of the decision surfaces
Example: 2 x 2 channel

Y1 | _ | hin hae z || m
Y2 ha1  hao T2 Ny

» MEF estimate is

. hi h
By = 11y; + 21?422 S
(|h11| + |ho| )

(hi1hiz + h31hao) 22
(|hu|2 + ‘h21|2)

+ filtered noise
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MRC filter

MRC is similar to MF,

with additional reliability scaling
Definition of Maximum Ratio Combining:
» diversity branches combined coherently
» combining weights selected to mazrmaize
post-combining SINR
» assuming noise + interference corrupting
branches uncorrelated
optimum MRC weights will be solved below
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Optimum MRC weights I

% Rewrite signal model for receiving zj

y = hy xk+2hj T;+n
J#k

Il
i

Y the covariance of noise + interference is
s JHY H
E{ii"} = ) h; bl + NI
J#k
 for MRC i is approximated as uncorrelated interference:

E{im i} = > lhmil* + No | G
ik
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Optimum MRC weights 11

Y The filter is
fk = Ak hy,

where Ay = diaglag1 ake ... agn,] is a diagonal matrix of
real reliability weights
J signal power after filtering is

2
Sk = |hEAkhk|2 = (Z Afem, hmk|2>

s the (Approximative) noise plus interference power is

I hiA, E {i iH} Ahy,

Y @Gl | D 1hunsl* +No

i#k
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Optimum MRC weights III

# The set of reliability weights may be scaled with any number
without changing SINR
J choose scale so that signal power Sy =

» minimize interference + noise power subject to constraint

> akm bkl = 1

2

» Lagrangian optimization:

L =1, +2) <,u— Zakm |hmk|2)

¢ ) is a Lagrange multiplier
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Optimum MRC weights IV

* Find minima of £

ac
P 20k | b * | D 1hmjl* + No | = 2\ hni* = 0
hm 7k
A
= QAkm =

2
> jzk [Bmjl” + No

# MRC weights are scaled by the interference + noise power per branch
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MRC example
2 x 2 MF example above
diversity branches

hi1 1+ hig o2 +ny
ha1 o1 + has o2 +no

Y1
Y2

MF

» coherent combining with weights hi; and h3;
» SIR for symbol z; is (omitting No)

ha)? + [haa|?
hf1h12 + h;lhgg

2
SIR, =

this is not MRC optimum
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MRC example II

when receiving x1, interference powers in y; and ys are
E{ii 7} = bl +No
E{ZQ Z;} = |h22‘2—|—N0

choosing A = |hy2|? + Np, MRC reliability weights are

a1 =1
|h12]? + No
|ha2|? + Ng

ai12 a

full MRC coherent combining weights h3; and a h3;:

2
hi)? +a |hat|”

hiihi2 +a R hoo

SIR; =
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MRC example III

for example if channel is near orthogonal
hi1 = haa =10, hiz =hg; =1

plain MF gives
1017
MF __ ~
SIRY™ = (20) ~ 25

MRC gives

100 +a \? 100.01 2
IRMRC = [ ——— ) = ~1
SIR; 10 + 10a 10.1 00

NOTE: MRC does not maximize SINR

» MRC: best SINR assuming uncorrelated noise + interference
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MRC & MF terminology

In textbooks, typically no distinction of the kind above is
done between MRC & MF

o MF/MRC for coloured noise is typically not treated

A matched filter is by definition a filter which maximizes
SINR assuming uncorrelated noise, be it white or
coloured

o see e.g. Benedetto-Biglieri, excercise 2.26, p. 102

MF vs MRC as used here is slight misuse of terminology

o in signal space, MF is by definition MRC, even with coloured
noise

o white-noise approximated MF or white-noise approximated MRC
would be more accuate

For conciseness of expression, MF and MRC as defined
above will be used below
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Zero Forcing

Why not solve x directly form y = Hx + n, forgetting the noise?
x=H"ly
If H is singular, use Moore-Penrose pseudo-inverse:
%= (H'H) 'H"y
» note: if H non-singular, we have
(HHH)A H' -H (H") THY-H!

ZF symbol estimate
X = x + coloured noise

» all IST has been forced to zero
» noise is coloured (if channel not orthogonal)
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Minimum Mean Square Estimator (MMSE)

First calculate some covariance matrices

E{ny}
E{yy"}

E{Hx+n)x"} =HE{xx"} =H
E {(Hx +n) (x"H" + n")}
= HE{xx"} H"+E {nn"} = HH" + NI
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MMSE 11

The Mean Square Error

& = E{jx—Fyl’}=TrE{(x—Fy) (x" —y"F")}
Tr [E {xx"} — 2Re [FE {yx"}] + F E {yy" } F"]
= Tr[I-2Re[FH]+F (HH" + NoI) F"]
Find extrema by differentiating w.r.t. the elements of F:

d€

T —2H" + 2F (HH" 4 NoI)

Solve for extremum filter matrix:
Fyse = HY (HH? + NoI) ™

this filter minimizes the MSE
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MMSE III
To see difference of MMSE and ZF, use matrix inversion lemma
V(A + VvV T = (T4 VHAV) T VHA
MMSE is ZF regularized by noise term:
Fuuse = (HUH + NoI) ' HY
» For small No, MMSE becomes ZF

» For large No, MMSE becomes MF (up to scaling)
» ZF and MMSE are ML if channel orthogonal

if non-white noise , E {nnH} =C:

Fuuse = HY (HH" + €)' = (H'C'H+1) H'C™!
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SINR analysis of linear receivers
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SINR for generic linear receiver

s For performance analysis, post-processing SINR after
linear receiver may be calculated

# possible residual ISI, and possibly coloured noise

% any linear receiver: FH = [f; f5 ... fy,]

 filter output for symbol k is

2z = fiHx + fin
= flhyz, + Zf,? h; z; + fi'n
wanted signal Z#k

v
noise and interference

» Channel matrixis H=[ h1 hy ... hy, |
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SINR for generic linear receiver 11

“ signal power after filtering is
2
Sk = | Ty
Y the noise plus interference power is

L= || + No £75;,
ez

 post-processing SINR  is
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MF, ZF, MMSE & Channel Covariance

% MF, ZF and MMSE can be written in the form: F = LHY

» LY = [ L L ... 1w ] is a channel inversion matrix

J filtered signal is
z=LRx + LH"n ,

“ the channel covariance matrix is
R=H"H
» diagonal elements: coherently combined (MF) channels of symbol z

e (HHH) — b b,
kk
» off-diagonal elements: ISI between z; and x; after MF

Tk = (HHH) = hI;;I hj

kj
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Signal and interference power: MF, ZF, MMSE

Everything can be understood in terms of
inversion matrix and channel covariance
Concentrate on symbol xy,

signal power after filtering

2
Sk = [THhy|” = |(LR),, |

noise plus interference power is

L = Y JUH"L + N IR
2k
2
= Y |@R),,| +No (LRLH),,
2k
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Post-processing SINR
Denote G = LR
post-processing SINR:

2
SINR,, = 9|

» first term in denominator comes from residual
post-processing self-interference
» second term is possibly enhanced and coloured noise

2
>z |9k1” + No (LRLH),
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Orthogonal channel, again

H proportional to a unitary matrix
channel covariance proportional to identity, R = rI

» rir = r is the gain of the MRC combined channels
optimum inversion matrix proportional to identity, L =11
SINR becomes

» no residual self-interference
» no noise enhancement
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SINR for Matched Filter

inversion matrix inverts just the coherently
combined powers.
» linear scaling, no effect on SINR, omitted here:

L=1I
SINR becomes

2
SINR,, = "k - "k

Zj;ék |7’kj|2 + No7kk Z#k |7'kj|2 /Tkk + No

» no self-interference is suppressed
» noise is not enhanced
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SINR for Zero Forcing

Y inversion matrix inverts the channel covariance,

Noise Enhancment by ZF, Example I

 Example: 2 x 2 channel

L=R! yi | | hir hi2 x1 ny
= +
Y2 ha1  haa T N
* G=1
% SINR becomes % The channel covariance matrix is
1
SINR: = 1, (R-Y),, R — | [l +1hal* Biihay + b3 oo
. : Rishi1 + hiohar  |hi2)? + |hao|?
» self-interference vanishes completely
» noise is enhanced _ [ Til T12 ]
» for an orthogonal channel we reproduce the result above T12 T22
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Noise Enhancment by ZF, Example II SINR for MMSE

+ The determinant of R is
2
det R = 11722 — |7“12|

“ the inverse of R is

—1 _ 1 7922 ’I‘Tz
detR | "2 711

% the ZF SINR for symbol z; is

1 detR 1 |r12] r
T Ny (R~"Y  Noraa Ny < 1 roa |~ Ny

» equality only if 712 = 0, i.e. orthogonal channel
» comparing to contribution of Ny to SINR for MF,
noise is enhanced by ZF receiver

Y inversion matrix inverts channel covariance up to regularization,
L=(R+No)!

# expression for SINR non-transparent
» both noise enhancement and some residual ISI
 In limit Ny — 0, Zero Forcing result reproduced
 In limit Ny — oo, we have
1
L——1I
No
» in expression for SINR, 1/Nj factors cancel
» MF result reproduced
J For orthogonal channel, we have

L = (r+No™'I

r
G
T’+N0

» result for MF and ZF reproduced
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Performance Analysis

With the SINR values calculated above, performance of
a detector can be analyzed

For example, if QPSK is used, the BER of a symbol with
SINR_K is

BER_k = Q(sqrt[SINR_K]) where

Q(x) = ¥ Erfc(x/Sqrt[2])
The average performance can be estimated by
averaging the BERs
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Performance Example of linear detectors:
Multiuser Detection for UL CDMA
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UL CDMA

There are U users simultaneously transmitting

each user is using a spreading code c, of length SF “chips”
» SF is the spreading factor
» The spreading code is interpreted as a column vector

T
Cy = [Clu C2y - - - CSF,u]

» elements of spreading code have norm 1
» usually cj, € {1, —1}orcu€{l, =1, j, —j}
the user is spreading the transmission of each symbol x, over SF chips
» example: SF = 4, one-tap channel h,, transmitted symbol z,,
» received signal from the transmission of user u (noise omitted):

E3

C
Yu_hulC§ZJ$u
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UL CDMA, Power control

Power Control (PC) is required in CDMA UL due to

near-far effect
» if no PC, signal from a user close to base station
drowns signal of a far-away user below
dynamic range of A/D converter
Fast PC
» attempts to follow fast fading
» instantaneous received signal power of different
users ~ equal
Slow PC
» attempts to follow slow fading
» mitigate shadowing and path loss
» average received power of different users ~ equal
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UL CDMA, simplification for MUD analysis

in WCDMA, UL is asynchronous
» timing of spreading codes of different users
is not synchronized
» new symbol starts in different chip for different users
the spreading sequences of different users
are not orthogonal
» spreading codes are pseudo-random sequences
» good cross-correlation and auto-correlation
properties
to simplify analysis of effect of inter-user
interference on UL CDMA with and without
Multiuser Detection (MUD), we assume
synchronous UL with non-orthogonal spreading codes
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UL CDMA MUD, signal model

signal model
e ] 4]
0 hy --- O X2
y = . [Cl C2 - CU] . +n

0 0 hU Ty

. . H
elements of covariance matrix ry, = hlh, c;,Cy
» interference between users u and v if spreading codes
not orthogonal
when elements of spreading code normalized to 1:

cle, = SF

coherently combined channel gain for user u is 7y, = SF |hy|?
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CDMA SINR for Matched Filter receiver

MF (= MRC!) for CDMA is the well-known RAKE receiver
Matched filter SINR for user u is

2
SINR, = T SE |7l

Zu;ﬁu |7’vu|2 /Tuu + No N Z'L);éu [ho[? |CuHCu|2 /SF + Ny

» we see the processing gain = SF against noise and interference
¢ wanted signal combines coherently
¢ noise and interference non-coherently
for random sequences E {cgcv} =+/SF for u # v
» can be used to approximate SINR when many interferers
with perfect PC
SF

U—1+Ng/|hy|?

» with increasing load, SINR decreases
» with “full load”, U = SF, SINR ~ 0 dB

SINR,, =
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UL CDMA MUD Performance Plots

next pages: performance plots

» synchronous CDMA, SF = 16

4 processing gain 10log;,(16) = 12.04 dB
random complex spreading codes
different number of users from U =1 to U = 16
MF, ZF and MMSE receivers
slow and fast PC
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Typical plot

One & two users, slow PC

SF=16, U=1
~ ..\.' .
1071 Single user: orthogonal
system. All detectors
. same performance
g 10"=2
. SP=16, U=2
=10 =5 1] 10
SNR, dB
10*-1
. o ~m- =
Adding a user makes i
MF interference limited. 10423
practically no effect on
ZF& MF S
e
-10 -5 0 5 10
SNR, dB
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‘ Half and full load (8 users, 16users), slow PC One & two users, fast PC
SF=16, U=8 SF=16, U=1, PC
r‘“\'ll%., e +970 Single user: orthogonal
10%-1 Y O A O, 15 i load — . system. Fast PC
g Half load: 107-1 L
\\ MF error floor rises removed fadlng._ AWGN
: i smallcfect on 7F & MMSE, g 10 i performance in Rx
¥ ZF at low SNR suboptimal = : 99
a 107-3 compared to AWGN
e \ ~12dB
L2
~ SF=16, U=16 e
-10 -5 0 10 i T SF=16, U=2, PC
SNR, dB "-.._* -14 -12 -10 -8 -6 -4 -2 0
o 0 SNR, dB
R e e e O e .\'\.“q’\
. 10~-1
Full load: 10%-1 =iz
MF error floor rises, & g N =
ZF very suboptimal & Adding a user makes g 1072 Sl
4-6 dB loss to MMSE MF interference limited. SR \\,\
practically no effect on \
ZF& MF o u
=10 -14 =12 -10 -8 -6 =4 -2 o

5
SNR, dB
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Half and full load (8 users, 16users), fast PC Observations from UL CDMA MUD
5F=16, U=8, PC
(2= nnel ZF performs worst when system is most interference
10n-1 ] e s WL / Half load: limited
; ~ - MF error floor rises, o ;
: small effect on MMSE, o thisisa cor\sequence of noise enhanc.ement
ZF > 1dB suboptimal o when load is nearly full, channel covariance R has small
10%-2 g eigenvalues
" these lead to noise enhancement
e __.7_._._.( SF=16, U=16, PC o regulating with NO | in MMSE makes R better conditioned
T aw, e ' i : less noise enhancement
Full load: o i 25 . e . ,L,JL CDMA ig d”esinged to operate with high load, close to
MF error floor rises, o e S | pole capacity
ZF 5-6 dB suboptimal g el j at high load, ZF performs badly
T for MMSE, accurate estimate of NO, and R, required
TS LU 00 O N
-10 - o 1
NR, dB
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