Transversal Filters for ISI Channels

Toeplitz Matrix for ISI Channel

 \star ISI channel:

$$y_k = h_0 x_k + \sum_{m=1}^{L-1} h_m x_{k-m} + n_k$$

 \star vector form

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

 \star with Toeplitz channel, example

									x_{-1}		
y_1]	h_2	h_1	h_0	0	0	0	0]	x_0		n_1
y_2		0	h_2	h_1	h_0	0	0	0	x_1		n_2
y_3	=	0	0	h_2	h_1	h_0	0	0	x_2	+	n_3
y_4		0	0	0	h_2	h_1	h_0	0	x_3		n_4
y_5		0	0	0	0	h_2	h_1	h_0	x_4		n_5
									x_5		

Linear Equalizers for ISI: Transversal Filter

- \star construct a transversal filter
 - a set of taps operating on a number of consecutive symbols, giving a symbol estimate
 - $\mathbf{\hat{f}}_{\mathrm{T}} \text{ is } \mathbf{\hat{1}} \times N_{\mathrm{t}} \text{ vector, } \mathbf{f}_{\mathrm{T}}^{\mathrm{H}} \mathbf{y} = \hat{x}_{D}$
 - ▶ the estimated symbol may be any of the symbols appearing in the received signals, given by delay D
 - \blacklozenge in example above, it may be any of the x_{-1}, \ldots, x_5
 - \blacklozenge the equizer performance is different for different delay D
 - the best delay may be sought for (Krauss & al.)
 - \blacklozenge often the middle symbol is taken, x_2 in example above

Transversal Filter III

- ★ problem: **H** is $N_{\rm r} \times (N_{\rm r} + L 1)$
 - ▶ more symbols in channel model than samples
 - $\mathbf{b} \mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$ is underdetermined
 - ▶ channel covariance **R** is singular
 - ▶ may be cured by oversampling (or multiple Rx antennas)
 - ▶ alternatively this may be simply overlooked
 - with MMSE, the matrix to be inverted is non-singular
 - poor performance for symbol at both ends
 - performance of symbols in the middle is almost optimum
 - \blacklozenge with MRC, this is not a problem

\star Example:

- ▶ 4-tap channel, taps [0.2, 0.9, 0.8, 0.2]
- ▶ SNR=10dB
- ▶ 7-tap transversal filter, 7 samples, 7+4-1=10 symbols in filter
- ▶ MMSE SINR for the symbols are:

[-12.72, 0.35, 1.64, 3.44, 3.95, 3.98, 3.87, 3.47, 3.42, -12.72]dB

▶ MRC SINR is -0.11 dB

81

79

Constructing Transversal Filter

- ★ construct MMSE filter for vector channel model using Toeplitz matrix
- ★ either take filter column corresponding to central symbol $D = \lfloor N_t/2 \rfloor$,
- \bigstar or optimize delay D

$$\mathbf{f}_{\mathrm{T}} = \left(\mathbf{H} \left(\mathbf{H}^{\mathrm{H}}\mathbf{H} + \mathbf{N}_{0}I\right)^{-1}\right)_{D}$$

ISI equalization & Transversal Filter performance

- 3-tap channel
 - □ tap amplitudes [0.41, 0.82, 0.41]
 - > sum of tap powers normalized to 1
 - > random phases for each tap
 - this set of taps includes some very difficult channels to equalize
 - the previous and next symbols may conspire to remove the center tap altogether, 0.41 x0 + 0.41 x2 may be - 0.82 x1
- 4-tap channel
 - □ tap amplitudes [0.15, 0.75, 0.6, 0.23]
- BER for QPSK modulation calculated
 - averaged over 1000 realizations of the tap phases

MRC vs MF, 3-tap channel

- true MRC several dB better at high SNR
- difference in BER not too significant
 - both suffer from error floor due to non-canceled interference

MMSE filter length, 3-tap channel

performance improvement almost saturates at 7 taps

85

83

MMSE filter length, 4-tap channel

- performance improvement almost saturates at 9 taps
- usually 2L+1 taps is sufficient filter length

Summary: Transversal Filters

- A transversal filter estimates one symbol from N_r consecutive samples
- Filter taps solved in time domain
 - e.g. one column of MMSE filter matrix
 - 2L+1 taps typically enough
 - > L taps to collect the energy of the symbol of interest
 - remaining taps to have sufficient independent samples to subtract interference
- the delay of the filter
 - which symbol is estimated from the set of samples
 - optimum delay depends on the Power Delay Profile
 - simple solution: take middle symbol

Performance of Different Transversal Filters

Frequency Domain Equalization, Block Transmission, and Cyclic Prefix

89

Circulant matrices, Diagonalization and Inversion

 \star The rows of a circulant matrix are rotated versions of a basic row

$$\mathbf{C} = \begin{bmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{bmatrix}$$

 \star a circulant matrix can be diagonalized with DFT:

$$\mathbf{MCM}^{\mathrm{H}} = \operatorname{diag} \left[\begin{array}{ccc} s_1 & s_2 & s_3 & s_4 \end{array} \right] \equiv \Lambda$$

- ★ the $N \times N$ DFT matrix has elements $m_{kl} = e^{2\pi j (k-1)(l-1)/N}$
- \star a circulant matrix is very simple to invert:

 $\mathbf{C}^{-1} = \mathbf{M}^{\mathrm{H}} \boldsymbol{\Lambda}^{-1} \mathbf{M}$

- ▶ Generic matrix inversion takes $O(N^3)$ multiplications
- with N a power of 2, invertion of circulant matrix takes $O(N \log_2 N)$ multiplications

FDE II

 \bigstar if the channel covariance is forced to circular, it can be inverted with DFT

 \blacktriangleright replace **R** with

	r_0	r_1	r_2	0	0	r_2^*	r_1^*	
	r_1^*	r_0	r_1	r_2	0	0	r_2^*	
	r_2^*	r_1^*	r_0	r_1	r_2	0	0	
$\widetilde{\mathbf{R}} =$	0	r_2^*	r_1^*	r_0	r_1	r_2	0	
	0	0	r_2^*	r_1^*	r_0	r_1	r_2	
	r_2	0	0	r_2^*	r_1^*	r_0	r_1	
	r_1	r_2	0	0	r_2^*	r_1^*	r_0	

- ▶ calculate $\tilde{\Lambda} = \mathbf{M} \widetilde{\mathbf{R}} \mathbf{M}^{\mathrm{H}}$, the eigenvalue matrix of the approximative channel covariance $\widetilde{\mathbf{R}}$
- ▶ invert channel + noise covariance, calculate approximative MMSE weights:

$$\left(\mathbf{H}^{\mathrm{H}}\mathbf{H} + \mathrm{N}_{0}I\right)^{-1}\mathbf{H}^{\mathrm{H}} \approx \mathbf{M}^{\mathrm{H}}\left(\widetilde{\Lambda} + \mathrm{N}_{0}I\right)^{-1}\mathbf{M}\mathbf{H}^{\mathrm{H}}$$

Frequency Domain Equalization (FDE)

★ The channel covariance of a Toeplitz matrix is almost circular ★ Example: 3-tap channel, 5 Rx samples:

$$\mathbf{H} = \begin{bmatrix} h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\ 0 & h_2 & h_1 & h_0 & 0 & 0 & 0 \\ 0 & 0 & h_2 & h_1 & h_0 & 0 & 0 \\ 0 & 0 & 0 & h_2 & h_1 & h_0 & 0 \\ 0 & 0 & 0 & 0 & h_2 & h_1 & h_0 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} h_2 & h_2^* h_1 & r_2 & 0 & 0 & 0 & 0 \\ h_1^* h_2 & |h_1|^2 + |h_2|^2 & r_1 & r_2 & 0 & 0 & 0 \\ h_1^* h_2 & |h_1|^2 + |h_2|^2 & r_1 & r_2 & 0 & 0 \\ 0 & r_2^* & r_1^* & r_0 & r_1 & r_2 & 0 \\ 0 & 0 & r_2^* & r_1^* & r_0 & r_1 & r_2 & 0 \\ 0 & 0 & 0 & r_2^* & r_1^* & |h_0|^2 + |h_1|^2 & h_1^* h_0 \\ 0 & 0 & 0 & 0 & r_2^* & r_1^* & |h_0|^2 + |h_1|^2 & h_1^* h_0 \\ 0 & 0 & 0 & 0 & r_2^* & h_0^* h_1 & |h_0|^2 \end{bmatrix}$$

$$r_0 = |h_0|^2 + |h_1|^2 + |h_2|^2 \\ r_1 = h_1^* h_0 + h_2^* h_1 \\ r_2 = h_2^* h_0$$

92

Block Transmission and Guard Interval

- \star transversal filter equalizes continuous single carrier transmission
 - ▶ decision made on incomplete info of transmitted symbols
 - ▶ some energy related to symbols in the equalization window always left outside the window
 - all information available for equalization cannot be used except for infinite length equalizer
- \star this can be improved by designing a **block transmission**
 - a block of consecutive symbols is transmitted, preceded by a guard interval
 - length of GI at least L-1
 - ▶ in the guard interval the ISI from the previous block is allowed to vanish, no new information transmitted
 - transmission rate lower for a block transmission than for continuous transmission

Block Transmission and GI: Example I

 \star guard interval filled with zeros

									0		
$\begin{bmatrix} y_1 \end{bmatrix}$		h_2	h_1	h_0	0	0	0	0]	0		n_1
y_2		0	h_2	h_1	h_0	0	0	0	x_1		n_2
y_3	=	0	0	h_2	h_1	h_0	0	0	x_2	+	n_3
y_4		0	0	0	h_2	h_1	h_0	0	x_3		n_4
y_5		0	0	0	0	h_2	h_1	h_0	x_4		n_5
									x_5		

- ★ samples y_1, \ldots, y_5 , have only contributions from x_1, \ldots, x_5 .
- \star no Inter-Block Interference
- \star symbols x_1, \ldots, x_2 equalized together from samples y_1, \ldots, y_5
- \star lower rate due to no information ni GI

Block Transmission and GI: Example II

 \star received power in *following* GI may be used to gather power for reception:

$\begin{bmatrix} y_1 \end{bmatrix}$		h_0	0	0	0	0 -	1			$\begin{bmatrix} n_1 \end{bmatrix}$
y_2		h_1	h_0	0	0	0	[:	r_1		n_2
y_3		h_2	h_1	h_0	0	0	:	x_2		n_3
y_4	=	0	h_2	h_1	h_0	0	:	x_3	+	n_4
y_5		0	0	h_2	h_1	h_0	:	r_4		n_5
y_6		0	0	0	h_2	h_1	:	r_5		n_6
y_7		0	0	0	0	h_2		-		n_7

- \star the equalizer may now detect all $x_1, \ldots x_5$ from this block
- \star this requires calculating a full TDE filter for all symbols in the block
- \star FDE does not work
- ★ after equalization, symbols in the block see a different channel ▶ symbols close to block end suffer from less ISI

Cyclic Prefix

 \star A very special block transmission: fill GI with Cyclic Prefix (CP):

$\left[\begin{array}{c}y_1\\y_2\\y_3\\y_4\\y_5\end{array}\right]$	=	$\left[\begin{array}{c} h_2\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}\right]$	$egin{array}{c} h_1 \ h_2 \ 0 \ 0 \ 0 \ 0 \end{array}$	$egin{array}{c} h_0 \ h_1 \ h_2 \ 0 \ 0 \end{array}$	${0 \\ h_0 \\ h_1 \\ h_2 \\ 0}$	$egin{array}{c} 0 \ 0 \ h_0 \ h_1 \ h_2 \end{array}$	$egin{array}{c} 0 \ 0 \ 0 \ h_0 \ h_1 \end{array}$	$egin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ h_0 \end{array}$		$egin{array}{c} x_4 \ x_5 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{array}$	+	$\left[\begin{array}{c}n_1\\n_2\\n_3\\n_4\\n_5\end{array}\right]$
	=	$\left[\begin{array}{c}h_0\\h_1\\h_2\\0\\0\end{array}\right]$	$egin{array}{c} 0 \ h_0 \ h_1 \ h_2 \ 0 \end{array}$	$egin{array}{c} 0 \ 0 \ h_0 \ h_1 \ h_2 \end{array}$	$egin{array}{c} h_2 \ 0 \ 0 \ h_0 \ h_1 \end{array}$	$egin{array}{c} h_1 \ h_2 \ 0 \ 0 \ h_0 \end{array}$		$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right]$	+	$\left[\begin{array}{c}n_1\\n_2\\n_3\\n_4\\n_5\end{array}\right]$		

- \star channel matrix is circular!
- \bigstar channel matrix and channel covariance can be diagonalized with DFT without loss
- \bigstar after FDE-MMSE, all symbols see exactly the same channel, have same SINR
- \star Single-carrier transmission with CP is UL modulation of LTE

97

95

OFDM I

 \star if the system has a CP, the channel is circulant

$\mathbf{MHM}^{\mathrm{H}} = \Sigma$

 Σ is diagonal matrix of channel singular values

- **\triangleright** diagonal elements of Σ are the Fourier transform of first column of **H**
- ▶ i.e. Fourier transform of the Power Delay Profile
- \star channel can be diagonalized at transmitter

$\left[\begin{array}{c}y_1\\y_2\\y_3\\y_4\\y_5\end{array}\right]$	=	$\left[\begin{array}{c}h_0\\h_1\\h_2\\0\\0\end{array}\right]$	$egin{array}{c} 0 \ h_0 \ h_1 \ h_2 \ 0 \end{array}$	$egin{array}{c} 0 \ 0 \ h_0 \ h_1 \ h_2 \end{array}$	$egin{array}{c} h_2 \ 0 \ 0 \ h_0 \ h_1 \end{array}$	$egin{array}{c} h_1 \ h_2 \ 0 \ 0 \ h_0 \end{array}$	$\left \mathbf{M}^{H} \right $	$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{bmatrix}$	+	$egin{array}{c} n_1 \ n_2 \ n_3 \ n_4 \ n_5 \end{array}$
	=	$\mathbf{M}^{\mathrm{H}}\Sigma$	$\mathbf{x} + \mathbf{r}$	1						

- ▶ requires no information of the channel at transmitter
- ▶ makes channel orthogonal
- removes all ISI
- ▶ transmission moved to the frequency domain

OFDM II

- \star This is Orthogonal Frequency Domain Multiplexing (OFDM)
- \star multicarrier transmission
 - \blacktriangleright there are N narrowband subcarriers
 - \blacktriangleright bandwidth W/N
 - ▶ a symbol is transmitted on a subcarrier
 - ▶ a subcarrier is a Fourier waveform
 - ▶ the narrowband channel observed on this subcarrier is Fourier transform of PDP
- \star receiver simply performs FFT (multiplying with **M**)
- \star perfect removing of ISI with exceedingly simple receiver

Single tap equalization: single carrier vs. OFDM OFDM: severe fading. MRC error floor due no diversity to interference 5-tap H, MRC 5x10^-1 — ТД 2x10^-1 BER 10^-1 .★· block 5x10^-2 - - OFDM 4 6 8 10121416182022 SNR, dB OFDM: OFDM: "single tap equalizer" is natural detector no ISI • single carrier: single tap equalizer is MRC detector

16-tap MMSE, continuous & block transmissions

- TDE: time domain equalization for continuous transmission
- CP: block transmission with cyclic prefix: FDE
- 0-GI: block transmission with silent guard interval. Block-TDE
 note: block transmissions have lower rate

100

Single tap equalization: single carrier vs. OFDM II

- uncoded BER: OFDM (much) worse than single carrier block transmission
 - block transmissions provide perfectly equalized multipath diversity
 - all symbols are received over the wide band, components from all cannel taps
 - OFDM has no ISI
 - > narrowband transmission, no multipath diversity
 - > frequency selective fading
 - □ recall that here the multiapath channel is not truly fading
 - amplitudes are fixed
- With diversity (though channel code etc) OFDM performance similar or slightly better than single carrier block transmission
 - slightly better with linear receivers: better channel estimation, no errors in equalization
 - here, channel estimation errors were not modeled

101

Summary: FDE

- with large equalizers, solving for transversal filter taps in time domain is computationally challenging
- approximative filter taps may be solved in frequency domain, using Fourier transform
 - approximation error decreases with length of filter, increases with length of channel
 - at high SNR; approximation error dominates performance
 - error floor due to intentional equalization inaccuracy

Summary Block transmissions & OFDM

- blocks of consecutive transmission symbols may be isolated from each other by inserting a Guard Interval between blocks
 - no inter-block interference
 - lower transmission rate due to GI
- equalization becomes a block-by-block operation
- If Guard Interval filled with Cyclic Prefix, FDE may be used without approximation
 - significant equalization complexity reduction when FFT applicable
- If CP is used, and pre-equalization with FFT is used at transmitter, we have constructed a multicarrier OFDM transmission
 - no ISI
 - each symbol sees a narrowband channel