Convolutional code

e A binary convolutional encoder is a finite memory system that
outputs n, binary digits for every ko information digits presented at
its input.

e The code rate is defined as R, =k /n,.

T N
/§—/\—’\/‘/\—’\/‘/\—’\
) 1 2 ko 1 2 k0 1 2 k0
input] T T
L1 I L]
N N 7 /]
‘ ‘ ‘ ‘ ‘ OUtpUt
I N N N e
1 2 . N,

e The message digits are introduced ko at the time into the input shift
register, which has Nk, positions.

¢ The modulo-g adders feed the output register with the n, digits and
these are shifted out.

e The output depends not only on the ko message digits but also on
(N —1) k, previous message digits.
e The parameter N is called the constraint length of the code.

e The code is called as <n0,kO,N) convolutional code.

Representations of a convolutional code
1.Shift register - (Implementation).
2.State diagram - (Distance properties).
3.Tree - (Sequential decoding).
4. Trellis - (Viterbi algorithm).
5.Matrix - (Syndrome decoding).
6.Polynomial - (Catasthrophic/noncathastrophic).

Notation on this slides
4 input information bits
s coded bits

¢ codeword

Example input

n,=2k=1N=2
1) Shift register.

e We have two interleaved output
sequences

59 = (s,50,...) s = (s, 69, 550)
_ e

s? = (sé),sf),...)

e At time t =1

C< output

2) State diagram

e Nodes are states, content of the shift
register.

e Each state has 2% output branches. These
are the transition having nonzero
probabilities.

e As new input arrives the system moves to

new state and generates n, output bits.

e The example code has 2" = 4 states.

2
O _— — 1) ®n
8, —1-ul+0-u1_1+1-u1_2—29i u,_, g’ =(101)
i=0
@) : (2) @)
5 :1'Uz+1'“zfl+1'%72229¢ u_, g =111
i=0
00 .
3) Tree. 00 |:11 4) Trellis
. 00 e The structure in the tree repeats itself.
e Shows the time 1 01 _]]
_ ﬂ e Index the states with both the time ¢ and state index m.
progression of the state 00) .
01 11 e Shows the time progression of the state sequences.
sequences. 4@
11
e Index the states with the L‘i
. 10
time ¢ . 0
) 00
e
00 01
11 ﬂ
01 11
10 4‘1
01

10
10

5) Matrix.

1101110000
0011011100
0000110110

s=uG=lu, uw u o 59 0001 10 1
00000O0O0GO0T11
000000O0GO0GO0O

e The columns are shifted versions of the generation matrix.

o If we have a finite amount of input bits ¢, the matrix has size

(i +1)x(2(i + 1)) and the generated code is a block code.

o O O O O

6) Polynomial.

Output is convolution of input and convolution of gm.

Take transform so that output will be product of these terms.

Appropriate transform is Z-transform.

1 2
u(z) = u, —{—ulz +u22

=147
=142 +2
g= [5 7}

s(2) = [uo —I—ulz1 +u2z2][1+22 1+ 2" +2°

assume v =1 0 1]

s =[1+ 22][1 v 142+ z2]
=[l+2" 1420 +4 42

By taking the inverse transform we get:

sV =(10001)

s :(11011)

5= (11 0100 01 11)

A list of good polynomials for half rate code (from Proakis “Digital

Communications”.)

Constraint lenght generator diee | Best possible diee
3 5 7 5 5
4 15 17 6 6
5 23 35 7 8
6 53 75 8 8
7 133 171 10 10
8 247 341 10 11

Distance properties of convolutional codes. sequences corresponding to the pair of outputs differ in the first k bit

e Error detection and error correction properties directly related to the blocks. For linear convolutional code
distance of the encoded sequence. d, = min {w([y]z) | [x]; = 0}-

e Due to the uniform error property of linear codes we assume that all e The minimum distance d_ of an (n,k) convolutional code with
zero sequence is transmitted in order to determine the performance of constraint length N is the column distance function evaluated at
the convolutional code. 1=N.

e Common performance measures of a convolutional code are: column e The minimum free distance, dﬁw, is the minimal Hamming distance
distance function, minimum distance, and minimum free distance. between all pairs of complete convolutional code words.

e Column distance d, is the minimum hamming distance between all

pairs of output sequences truncated at length 7 given that the input

Weight enumeration function.

e Weight enumerator function, T'(D), of the code output sequence
weights is a sequence that gives all the information about the weights
of the paths starting in the state diagram at the state Sl and merging
again in S .

e For calculating the T'(D) we modified state diagram

e The edges are labeled with an indeterminant D raised to the
exponent of the weight of the encoded sequence of that state

transition. T (D) =

2D° — D°

‘ =2D° +D* +5D" ... = A D
1—(D*+2D"' - D°)]Z; !

e The self loop S| is eliminated by splitting the state into two states.) .]))
A , 1s number of paths with weight d diverging from state Sl.

Input-output weight enumeration function.

e Weight function T} (W,D, L) that also considers the exponent of
input data frame W and the parameter L that counts length of the

paths.

T3 (W, D,L) = WD°L (1 + WL) + WD + ...
= Z Z Z C,a szDdLl
w=1d=d. =1

f

Cm ., is the number of paths diverging from state S, and remerging into

it later generated by an information sequence of weight w, having

weight d, and with length [.

Systematic recursive convolutional codes.

sV =u gV (@

sP () =u)g? (2

By dividing both sequences with g<1) (z) we get a new sequences where
one contains the systematic bit and the other is generated by a
recursive digital filter.

sV (2) = u()

9(2) ()

s?(2) = uz) o)
g’

1
input
input C(output - tout
5 —a<+ outpu

Bit distance spectrum of <A5'>> of both codes.
d 5 6 7 8 9 10 11 12 13 14 15

AV NS 1 4 12 32 80 192 448 1024 2304 5120 11264
AV RS 2 6 14 32 72 160 352 768 1664 3584 7680

In low SNR the recursive coder will perform better.

Importance of a code spectrum

A linear code

A linear code with length n and rank £ is a linear subspace C with
dimension k of the vector space Fnk

For a linear code the minimum weight describes also the minimum
distance between the code words.

The error probability can be described by the code words distance to all
zero code word.

The minimum distance is described by Hamming weight — minimum

weight over all the code word.

Probability of error for an error path
ML probability for all zero code word is multiplication of the
probabilities at each trellis section

B Py, sy =8,,8 =S)p(y, s, =8,,5, =8,)
Po _...p(yk Is, , =80.8, =80)-.p(Yy 18y =S58y =3,)
If an error path has distance d from all zero code word it differs from
all zero code word at d positions.

ML probability for erroneous codeword for example

p(y, lsy =8,,8 =S)p(y, Is,=8,,8, =S,)

d=2
b= DV Uy = Sg, 8, # SO)(H PG Vit # S5 8 = So)j
= i-1
POk VSeain # So0sSkeas = S0)
Py ISy =80.8y =S,)

Maximum likelihood decision error when p, > p,
The ML error is when the multiplication of probabilities is higher for
“wrong” codeword. Since they are different only at some positions we
can compare multiplications at these positions where they differ
PSP
Hp(yk L5, = S0,8 =S80) S Hp(yk 18,1 # So> 5, #S0)
o

o

Probability of error for an error path in Gaussian channel with BPSK
signalling

4Edij
4N,

1Ed,
2N,

p{ci — c]} = %erfc

where ¢ describes the path in trellis and dZ.]. describes hamming distance

between the paths.

In each trellis section we could prefer either transition that belongs into
correct codeword or transition that belongs into an erroneous path.

If we prefer an erroneous path we do ¢, errors. (some information bits
in the erroneous path are the same as bits in the correct path).

The average bit errors we do over all the possible erroneous paths is
e= Z;cj’dP(ci — cj)
-
Now we have to average this result over all the trellis sections.
In a code with rate k/n each trellis section corresponds to k information

bits.
For information block length N there are total N/k sections.

In each section we could do an error. There are total N sections

N/k *e

This results should be averaged over the probability of information bit
error 1/N. (N information bits and error in each of them is equally

possible).

The total error probability

ple) < ic‘j’dP(ci — cj.)
j=1

c. P(ci —>c].)+ Y c. P(ci —>cj)

Jid J,d

I

,_.
<.
I
=
~

j=
k

ZCMP(CZ. — c‘j)+ C

j=1

IN

The union Bhattacharyya bound

e A simpler form of the union bound can be obtained by using a bound
to the pair wise error probability exceeds the exact value.

p{s — 8 }:lerfc d“ <expi— dU
‘ J 2 AN |~

0

< e ;
p(e)_MZZexp _4N0

i=1 j=i

Some other useful bounds

ﬁ[l—%]exp(—%]<%erfc[\/§]§\/%Xexp{—él—j\(%}

