Kalle Ruttik

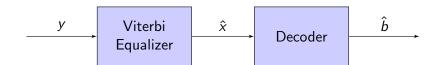
Communications Laboratory Helsinki University of Technology

May 2, 2007

MAP algorithm

Soft decoder performance

Need for a soft decoder



- Viterbi Equalizer provides only ML bit sequence \hat{x}
- ML sequence \hat{x} contains hard bits
- The decoder following the Viterbi equalizer has to operate on hard bits

MAP algorithm

Soft decoder performance

Performance



Comparison of soft and hard Viterbi decoder performance

- The performance of the decoder can be improved if the decoder operates on the soft values
 - Soft value contains not only the bit value but also the reliability information
 - For example soft value could be the bit probability

MAP algorithm

Soft bit

Soft bit calculation

- In order to have soft values at the input of the decoder the equalizer should generate a soft output
- Viterbi algorithm generates at the output only ML sequence

 → hard bits
- The soft information can be expressed as *aposteriori* probability of a bit
 - In the input to the equalizer the soft information is described as the probability of the input symbol
 - At the output the soft information can be expressed as aposteriori probability of the symbol
 - In case of binary bits the soft information can be expressed as loglikelihood ratio (IIr)

Soft bit as loglikelihood ratio

- For deciding a binary bit value accordingly to Bayesian decision approach we have to calculate IIr for a bit and compare it to the decision threshold
 - Loglikelihood ratio is a sufficient statistics it contains all information for making optimal decision
 - In our setup (equalizer decoder) at the output of the equalizer we do not want to make decision (yet) but postpone it to the decoder stage
 - We provide into the decoder input sufficient statistics
- For bit sequence the IIr for a bit has to be calculated by first marginalising the bit probabilities
 - Marignalization meas integrating (summing) over the values of nonrelevant variables

MAP algorithm

Marginalisation

Marginalisation

- Marginalisation of a distribution of a variable is a removal of the impact of the nonrelevant variables
- For exmaple marginal distribution of a variable x_1 from the distribution of three variables x_1, x_2, x_3 is

$$p(x_1) = \int_{-\infty}^{\infty} p(x_1, x_2, x_3) dx_1 dx_2$$

 for a discrete variables we could replace the integral over distribution by a sum over possible values

$$p(x_1) = \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3)$$

MAP algorithm

Marginalisation

Marginalisation ...

• Further simpolification: if the variables are independent the probability can be split

$$p(x_1)p(x_2)p(x_3)$$

• The marginal proability of x_1

$$p(x_1) = p(x_1) \left(\sum_{x_2} p(x_2) \right) \left(\sum_{x_3} p(x_3) \right)$$

• Because we sum over probabilities: the sum over all possible values of x_2 and x_3 are 1

MAP algorithm

Marginalisation

Soft bit

 LLR contain sufficient statistics for making optimal decision about the bit

$$\log \frac{p(x=1|y)}{p(x=0|y)}$$

replace both of the conditional probabilities by using Bayes formula

$$p(x = 0|y) = \frac{p(y|x = 0)p(x)}{p(y|x = 0) + p(y|x = 1)} = \frac{p(y|x = 0)p(x)}{p(y)}$$

$$p(x = 1|y) = \frac{p(y|x = 1)p(x)}{p(y|x = 0) + p(y|x = 1)} = \frac{p(y|x = 1)p(x)}{p(y)}$$

• If the symbols are apriori equally probable we can write

$$\log \frac{p(x = 1|y)}{p(x = 0|y)} = \log (p(x = 1|y)) - \log (p(x = 1|y))$$

Soft information from a symbol sequence

- Assume that the symbols are observed in the in additive white noise
- For a symbol sequence we have from marginalisation

$$\log \left(\frac{\sum\limits_{x_{k}=1}^{n} p(x_{1}, x_{2}, \dots, x_{k} = 1, \dots, x_{N} | y_{1}, y_{2}, \dots, y_{N})}{\sum\limits_{x_{k}=0}^{n} p(x_{1}, x_{2}, \dots, x_{k} = 0, \dots, x_{N} | y_{1}, y_{2}, \dots, y_{N})} \right)$$

• Based on Bayes formula

$$p(x_{1}, x_{2}, ..., x_{k} = 1, ..., x_{N}|y_{1}, y_{2}, ..., y_{N}|)$$

$$= \frac{p(y_{1}, y_{2}, ..., y_{N}|x_{1}, x_{2},, x_{k} = 1, ..., x_{N})p(x_{1}, x_{2}, ..., x_{k} = 1, ..., x_{N})}{p(y_{1}, y_{2}, ..., y_{N})}$$

$$p(x_{1}, x_{2}, ..., x_{k} = 0, ..., x_{N}|y_{1}, y_{2}, ..., y_{N}|)$$

$$= \frac{p(y_{1}, y_{2}, ..., y_{N}|x_{1}, x_{2}, ..., x_{k} = 0, ..., x_{N})p(x_{1}, x_{2}, ..., x_{k} = 0, ..., x_{N})}{p(y_{1}, y_{2}, ..., y_{N})}$$

MAP algorithm MAP

MAP algorithm

We can simplify

$$\log \frac{\sum\limits_{x_{k}=1}^{\sum} p(y_{1}, y_{2}, \dots, y_{k}, \dots, y_{N} | x_{1}, x_{2}, \dots, x_{k} = 1, \dots, x_{N})}{\sum\limits_{x_{k}=0}^{\sum} p(y_{1}, y_{2}, \dots, y_{k}, \dots, y_{N} | x_{1}, x_{2}, \dots, x_{k} = 0, \dots, x_{N})}$$

$$= \log \frac{\sum\limits_{x_{k}=1}^{\sum} \left(\prod\limits_{k_{1}} p(y_{k_{1}} | x_{1}, x_{2}, \dots, x_{k} = 1, \dots, x_{N})\right)}{\sum\limits_{x_{k}=0}^{\sum} \left(\prod\limits_{k_{1}} p(y_{k_{1}} | x_{1}, x_{2}, \dots, x_{k} = 0, \dots, x_{N})\right)}$$

single path =
$$\log \frac{\sum\limits_{x_{k}=1}^{\sum} \left(\prod\limits_{k_{1}} p(y_{k_{1}}|x_{k_{1}},x_{k}=1)\right)}{\sum\limits_{x_{k}=0}^{\sum} \left(\prod\limits_{k_{1}} p(y_{k_{1}}|x_{k_{1}},x_{k}=0)\right)}$$

MAP algorithm L_{MAP}

MAP algorithm

$$\begin{split} & \underset{=}{\textit{multipath}} & & \log \frac{\sum\limits_{x_{k}=1} \left(\prod\limits_{k_{1}} p\left(y_{k_{1}} | x_{1}, x_{2}, \ldots, x_{k}=1, \ldots, x_{N}\right)\right)}{\sum\limits_{x_{k}=0} \left(\prod\limits_{k_{1}} p\left(y_{k_{1}} | x_{1}, x_{2}, \ldots, x_{k}=0, \ldots, x_{N}\right)\right)} \\ & \underset{=}{\textit{multipath}} & & \sum\limits_{x_{k}=1} \left(\prod\limits_{k_{1}} p\left(y_{k_{1}} | s_{k_{1}-1}, x_{k_{1}}, x_{k}=1\right)\right)}{\sum\limits_{x_{k}=0} \left(\prod\limits_{k_{1}} p\left(y_{k_{1}} | s_{k_{1}-1}, x_{k_{1}}, x_{k}=0\right)\right)} \end{split}$$

MAP algorithm L_{MAP}

MAP algorithm

- The last equation is the general form for the Maximum Aposteriori Probability (MAP) estimation algorithm
- The optimal algorithm for estimating not only bit values but also their reliability is maximum aposteriori probability (MAP) estimation for each bit in the received codeword
- For calculating the loglikelihood ratio from the *aposteriori* probabilities we have to sum over all possible bit sequences
 - Sum of the probabilities of the bit sequences where the bit $x_k=1$ and where the bit $x_k=0$
 - Take the logarithm of the ratio of these probabilities
- This is different compared to the Viterbi algorithm where we selected only one ML path
- MAP algorithm sums over all possible codewords (paths in the trellis)

MAP algorithm MAP

Comparison of MAP and Viterbi algorithms

- Viterbi algorithm estiamtes the whole sequence, MAP algorithm estimates each bit separately
- Minimization of sequence (codeword) error does not mean that the bit error is minimized
- Viterbi algorithm estimates ML sequence
 - estimated \hat{x} is a vector $\hat{\mathbf{x}}$ of hard bits corrsponding to ML sequence
 - the error probability is that given the received symbol vector y
 the estimated sequence x̂ is not equal to the transmitted
 codeword x: p(x̂ ≠ x|y)
 - Viterbi algorithm minimizes block error ratio (BLER)
 - no information about the reliability of the estimation

Comparison of MAP and Viterbi algorithms...

- MAP for each bit estimates the *a-posteriori* probability for each bit and minimizes bit error probability
 - \hat{x} is a vector of likelihood ratios for each bit
 - the error probability is: given the received symbol vector \mathbf{y} the estimations for each bit k $\hat{x_k}$ are not equal to the transmitted bit x_k : $p(\hat{x} \neq x|\mathbf{y})$
 - The loglikelihood ratio sign shows the bit value the amplitude describes reliability how probable the decision is

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

MAP algorithm L_{MAP}

BCJR

- Implementation of MAP algorithm for decoding a linear code was proposed by Bahl, Cocke, Jalinek, and Raviv (BCJR) in 1974
 - For general trellis the algorithm is also known as forward-backward algorithm or Baum-Welch algorithm
- The algorithm is more complex than Viterbi algorithm
- When information bits are not equally likely the MAP decoder performs much better than Viterbi decoder
 - Used in iterative processing (turbo codes)
 - For turbo processing BCJR algorithm is slightly modified

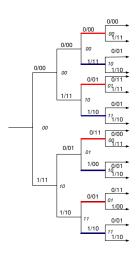
MAP algorithm

MAP on trellis

Derivation of MAP decoding algorithm in trellis

- BCJR (MAP) algorithm for binary transmission finds the marginal probability that the received bit was 1 or 0
- Since the bit 1 (or 0) could occur in many different code words, we have to sum over the probabilities of all these code words
- The decision is made by using the likelihood ratio of these marginal distributions for x=1 and x=0
- The calculation can be structured by using trellis diagram
 - For every state sequence there is an unique path trough the trellis
 - Codewords sharing common state have common bit sequence. This sequence can be computed only once.
- The objective of the decoder is to examine states *s* and compute APPs associated with the state transitions

Marginal probability

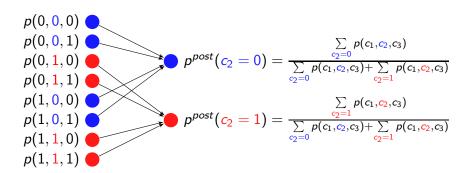


- The probability of the code words is visualised in the code tree
- For independent bits the probability of one codeword is multiplication of probabilities of the individual bits in the codeword
- The marginal probability from the code tree for some particular bit beeing 1 or 0 corresponds to the sum of probabilities over all the codewords where this bit is 1 or 0
- A structured way for marginal probability calculation is to use trellis

MAP algorithm LMAP on trellis

Example: calculation of marginal probabilities

$$p(c_1, c_2, c_3)$$



4□ > 4個 > 4 種 > 4 種 > 種 ● 9 Q ○

MAP algorithm

MAP on trellis

Example: a-posteriori probability

For the independent samples we can separate

$$p^{post}(c_{2} = 0) = \frac{\sum\limits_{c_{2}=0} p(c_{1}|c_{2})p(c_{2})p(c_{3}|c_{1}, c_{2})}{\sum\limits_{c_{2}=0} p(c_{1}|c_{2})p(c_{2})p(c_{3}|c_{1}, c_{2}) + \sum\limits_{c_{2}=1} p(c_{1}|c_{2})p(c_{2})p(c_{3}|c_{1}, c_{2})}$$

$$= \frac{\sum\limits_{c_{2}=0} p(c_{1})p(c_{2})p(c_{3})}{\sum\limits_{c_{2}=0} p(c_{1})p(c_{2})p(c_{3}) + \sum\limits_{c_{2}=1} p(c_{1})p(c_{2})p(c_{3})}$$

$$= \frac{p(c_{2} = 0)\left(\sum\limits_{c_{1}} p(c_{1})\right)\left(\sum\limits_{c_{2}} p(c_{3})\right)}{\sum\limits_{c_{1},c_{3}} p(c_{1})p(c_{3})\left(\sum\limits_{c_{2}=0} p(c_{1}) + \sum\limits_{c_{2}=1} p(c_{2})\right)}$$

MAP algorithm

MAP on trellis

Example:a-posteriori probability...

• The likelihood ratio becomes

$$\frac{p^{post}(c_2=1)}{p^{post}(c_2=0)} = \frac{p(c_2=1)\left(\sum_{c_1}p(c_1)\right)\left(\sum_{c_3}p(c_3)\right)}{p(c_2=0)\left(\sum_{c_1}p(c_1)\right)\left(\sum_{c_3}p(c_3)\right)}$$

$$=\frac{p(c_2=1)\cdot(p(c_1=0)+p(c_1=1))\cdot(p(c_3)+p(c_3=0))}{p(c_2=0)\cdot(p(c_1=0)+p(c_1=1))\cdot(p(c_3)+p(c_3=0))}$$

- The computation can be simplified by summing over all possible beginnings and ends of the codewords separately
 - In this simple example the sums can be reduced to 1, for a general code this is not the case

Derivation of the forward-backward algorithm

• For a general HMM the marginalisation can be simplified by grouping together the codewords that have a common terms.

$$\log rac{\sum\limits_{x_{k}=1}^{\sum}\left(\prod\limits_{k_{1}}p\left(\left.y_{k_{1}}\right|s_{k_{1}-1},x_{k_{1}},x_{k}=1
ight)
ight)}{\sum\limits_{x_{k}=0}\left(\prod\limits_{k_{1}}p\left(\left.y_{k_{1}}\right|s_{k_{1}-1},x_{k_{1}},x_{k}=0
ight)
ight)}$$

• Let denote transition at stage k_1 from state $s_{k_1} = S_i$ to state $s_{k_1+1} = S_j$ in the next stage as

$$M_{k_1,j,i} = \rho(y_{k_1}|s_{k_1} = S_i, s_{k_1+1} = S_j)$$

= $\rho(y_{k_1}|S_{k_1}, x_{k_1})$

MAP algorithm

MAP on trellis

Derivation of the forward-backward algorithm

$$\sum_{x_{k}=1} \left(\prod_{k_{1}} p(y_{k_{1}} | s_{k_{1}}, x_{k_{1}}, x_{k} = 1) \right) = \sum_{x_{k}=1} \left(\prod_{k_{1}} p(y_{k_{1}} | s_{k_{1}}, s_{k_{1}+1}, x_{k} = 1) \right)$$

 $\sum_{x_k=1}$ sum over all the symbol sequences where $x_k=1$

 \prod_{k_1} multiplication over all the state transition along a path corresponding to some particular codeword

- We can regroup:
 - all the codewords contain one common transition $p(y_k|s_k,s_{k+1},x_k=1)$

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

MAP algorithm

MAP on trellis

Derivation of the forward-backward algorithm

$$\begin{split} &\sum\limits_{s_{k} \in \mathcal{S}} p\left(y_{k} | s_{k}, s_{k+1}, x_{k} = 1\right) \cdot \left(\prod\limits_{k_{1} < k} p\left(\left.y_{k_{1}} \right| s_{k_{1}}, s_{k_{1}+1}\right)\right) \cdot \left(\prod\limits_{k_{1} > k} p\left(\left.y_{k_{1}} \right| s_{k_{1}}, s_{k_{1}+1}\right)\right) \\ &A_{k,i} = \left(\prod\limits_{k_{1} < k} p\left(\left.y_{k_{1}} \right| s_{k_{1}}, s_{k_{1}+1}\right)\right) \text{ is called forward metrics} \\ &B_{k,j} = \left(\prod\limits_{k_{1} > k} p\left(\left.y_{k_{1}} \right| s_{k_{1}}, s_{k_{1}+1}\right)\right) \text{ is called backward metrics} \end{split}$$

- $\alpha_{k,i} = \log(A_{k,i})$ is sum of the proabilities along all the paths that when starting from the beginning of the trellis at the stage k will merge to state i
- $\beta_{k,j} = \log(B_{k,j})$ is sum of the proabilities along all the paths that when starting from the end of the trellis at the stage k+1 merge to state j

MAP algorithm

MAP on trellis

Calculation of metrics

- A and B can be calculated recursively
- for particular state k_i , i we can write corresponding $A_{k_1,i}$ $A_{k_1,i} = \sum_{s_k = S_i} p(y_{k_1-1}, y_{k_1-2}, \dots, y_1 | s_{k_1} = S_i, s_{k-1}, \dots, s_1)$

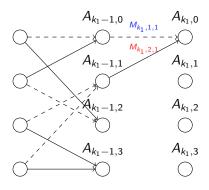
$$A_{k_{1},i} = \sum_{s_{k_{1}-1}=S} \begin{pmatrix} p(y_{k_{1}-1}|s_{k_{1}}=S_{i},s_{k_{1}-1}=S_{i_{1}}) \\ \cdot p(y_{k_{1}-2},\ldots,y_{1}|s_{k_{1}-1}=S_{i_{1}},\ldots,s_{1}) \end{pmatrix}$$

$$= \sum_{i_{1}} M_{k_{1},i,i_{1}} \cdot A_{k_{1}-1,i_{1}}$$

$$B_{k_1,j} = \sum_{s_{k_1+1}=S} \begin{pmatrix} p(y_{k_1+1}|s_{k_1}=S_j,s_{k_1+1}=S_{j_1}) \\ p(y_{k_1+2},\ldots,y_N|s_{k_1+1}=S_{j_1},\ldots,s_N) \end{pmatrix}$$

$$= \sum_{j_1} M_{k_1,j,j_1} \cdot B_{k_1+1,j_1}$$

Illustration: froward metrics



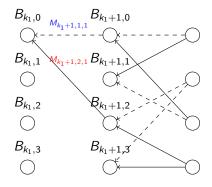
$$A_{k_1,i} = \sum_{i_1} M_{k_1,i,i_1} \cdot A_{k_1-1,i_1}$$

= $M_{k_1,1,1} \cdot A_{k_1-1,1} + M_{k_1,2,1} \cdot A_{k_1-1,2}$

MAP algorithm

MAP on trellis

Illustration: bacward metrics



$$B_{k_1,i} = \sum_{i_1} M_{k_1+1,i,i_1} \cdot B_{k_1+1,i_1}$$

$$= M_{k_1+1,1,1} \cdot B_{k_1-1,1} + M_{k_1+1+1,2,1} \cdot B_{k_1+1,2}$$

MAP algorithm LMAP on trellis

Calculation in log domain

For numerical stability better to compute in logarithmic domain

$$\log (A_{k,i} \cdot M_{k,i,j} \cdot B_{k,j}) = \log (A_{k,i}) + \log (M_{k,i,j}) + \log (B_{k,j})$$

$$= \alpha_{k,i} + \mu_{k,i,j} + \beta_{k,j}$$

$$\alpha_{k,i} = \log (A_{k,i}) \quad \beta_{k,j} = \log (B_{k,j}) \quad \mu_{k,i,j} = \log (M_{k,i,j})$$

$$\begin{array}{lcl} A_{k_1,i} & = & \sum\limits_{i_1} M_{k_1,i,i_1} \cdot A_{k_1-1,i_1} & \Rightarrow & \log \left(\sum\limits_{i_1} e^{\mu_{k_1,i,i_1} + \alpha_{k_1-1,i_1}} \right) \\ B_{k_1,j} & = & \sum\limits_{j_1} M_{k_1+1+1,j,j_1} \cdot B_{k_1+1,j_1} & \Rightarrow & \log \left(\sum\limits_{j_1} e^{\mu_{k_1+1,j,j_1} + \beta_{k_1+1,j_1}} \right) \end{array}$$

MAP algorithm

MAP on trellis

Metric for AWGN channel

 Probability calcualtion simplification for the equalizer in AWGN channel

$$\frac{1}{\sqrt{2\pi\sigma_{n}^{2}}} e^{-\frac{(y_{k}-f(x_{k},s_{k},h_{ch}))^{2}}{2\sigma_{N}^{2}}} \Rightarrow -\log\sqrt{2\pi\sigma_{n}^{2}} - \frac{(y_{k}-f(x_{k},s_{k},h_{ch}))^{2}}{2\sigma_{N}^{2}}$$

$$\Rightarrow -\frac{1}{2\sigma_{N}^{2}} (y_{k}^{2} - 2y_{k}f(x_{k},s_{k},h_{ch}) + f(x_{k},s_{k},h_{ch})^{2})$$

$$\Rightarrow \frac{1}{2\sigma_{N}^{2}} 2y_{k}f(x_{k},s_{k},h_{ch}) - \frac{1}{2\sigma_{N}^{2}} f(x_{k},s_{k},h_{ch})^{2}$$

Initialization

• Suppose the decoder starts and ends with known states.

$$A_{0,0} = \left\{ egin{array}{ll} 1, & s = S_0 \ 0, & ext{otherwise} \end{array}
ight.$$

If the final state is known

$$B_{N,0} = \left\{ \begin{array}{ll} 1, & s_N = S_0 \\ 0, & \text{otherwise} \end{array} \right.$$

• If the final state of the trellis is unknown

$$B_{N,j}=\frac{1}{2^m},\ \forall s_N$$

Metric calculation

Map algorithm: Summing over all the codewords where the symbol $\mathbf{x}_k = \mathbf{0}$ and where it is $\mathbf{x}_k = \mathbf{1}$

 at the node we combine the probabilities meging into this node

$$\alpha_k(s_k = S_i) = \sum_{s_k = S_i} p(y_{k-1}, y_{k-2}, \dots, y_1 | s_k = S_i, s_{k-1}, \dots, s_1)$$

- · We do not reject other path but sum the probabilities togeher
- the probability of the part of the codeword continuing from the trellis state where they merge will be same for both codewords
- Similarly we can calculate for backward metric *B* by starting at the end of the trellis

MAP algorithm LMAP on trellis

Algorithm

- Initialize the forward and backward metrics $\alpha_0^*(k)$
- Compute the brance metrics $\mu_{k,i,j}$
- Compute the forward metrics $\alpha_{k,i}$
- Compute the backward metrics $\beta_{k,i}$
- Compute APP L-values *L(b)*
- (optional) Compute hard decisions

MAP algorithm
LExample:Problem

Example: MAP equalizer

- Use MAP bit estimation for estimating the transmitted bits if the the channel is $h_{ch} = 1 \cdot \delta(0) + 0.3 \cdot \delta(1)$.
- The received signal is $y_{rec} = [1.3, 0.1, 1, -1.4, -0.9]$
- The input is a sequence of binary bits b modulated as x $1 \rightarrow 1$ $0 \rightarrow -1$.
- The EbN0 = 2dB
- Estimate the most likely transmitted bits
- (Notice that we are using the same values as in the example about Viterbi equalizer.)

Metric assignment

 Metric is calculated based on the received value and the value in trellis branch.

$$\frac{1}{||h_{ch}||^2} \left(\frac{1}{2\sigma_N^2} 2y_k f(x_k, s_k, h_{ch}) - \frac{1}{2\sigma_N^2} f(x_k, s_k, h_{ch})^2 \right)$$

where

$$f(x_k, s_k, h_{ch}) = h_1 \cdot x_k + h_2 \cdot x_{k-1} + \cdots + h_L \cdot x_{k-(L-1)}$$

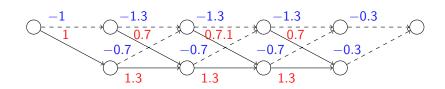
is the noiseless (mean) value of the corresponding trellis branch. This metric is normilized by the channel total power $\frac{1}{||h_{ch}||^2}$

MAP algorithm

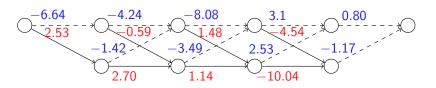
Example:Solution

Trellis

Metric on each branch



Mean value on each branch.



Metric in each trellis branch

MAP algorithm

Example:Solution

Backward calculation

Example: Backward calculation, Bacward trellis

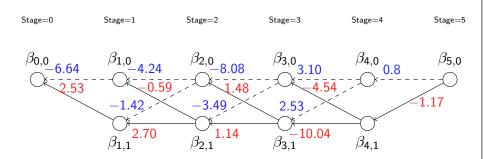
- start from the end of the trellis and calcualate the sum of the probabilitites
- Init the last stage probability to 1 (in log domain to 0): $\beta_{5.0}=0$
 - ① By using the state probabilities k+1 and the probabilities on the transitions calculate the probabilities for the states k $\beta_{k,i} = \log\left(\sum_j e^{\mu_{k,i,j}+\beta_{k+1,j}}\right)$

(If the values are in the log domain for the sum you have to convert them back to the probability domain.)

2 Normilize (needed for the numerical stability) $\beta_{k,\#} = \beta_{k,\#} - \max(\beta_{k,\#})$

MAP algorithm
LExample:Solution
LBackward calculation

Example: Backward calculation, Bacward trellis



$$eta_{stage,state}$$
 $eta_{k,i} = \log\left(\sum_{j} e^{\mu_{k+1,i,j} + eta_{k+1,j}}\right)$

Example: Solution Backward calculation

Example: Backward calculation: Stage 5 to 4

 $\beta_{0,0}$

$$\beta_{1,0}$$

 $\beta_{2,0}$

$$\beta_{3,0}$$

 $\beta_{4,0}$

 $\beta_{1,1}$

$$\beta_{2,1}$$

 $\beta_{3.1}$

$$\bigcirc$$
 $\beta_{4.1}$

The new state probabilities

$$\beta_{4,0} = \mu_{5,0,0} + \beta_{5,0} = 0.80 + 0$$

$$\beta_{4,1} = \mu_{5,1,0} + \beta_{5,0} = -1.17 + 0$$

$$\beta_{4,0} = 0.80 - (0.80) = 0, \ \beta_{4,1} = -1.17 - (0.80) = -1.97$$

MAP algorithm Example:Solution

□Backward calculation

Example: Backward calculation: Stage 5 to 4

 $\beta_{0,0}$

$$\beta_{1,0}$$

$$\beta_{3,0}$$

0.80 0.80

$$\bigcirc$$

$$\beta_{3.1}$$

1 The new state probabilities

$$\beta_{4,0} = \mu_{5,0,0} + \beta_{5,0} = 0.80 + 0$$

$$\beta_{4,1} = \mu_{5,1,0} + \beta_{5,0} = -1.17 + 0$$

2
$$\beta_{4,0} = 0.80 - (0.80) = 0$$
, $\beta_{4,1} = -1.17 - (0.80) = -1.97$

MAP algorithm

Example:Solution

Backward calculation

Example: Backward calculation: Stage 5 to 4

 $\beta_{0,0}$

$$\beta_{1,0}$$

 $\beta_{2.0}$

 $\beta_{3.0}$

0

 $\beta_{1.1}$

 $\beta_{3.1}$

-1.97

1 The new state probabilities

$$\beta_{4,0} = \mu_{5,0,0} + \beta_{5,0} = 0.80 + 0$$

$$\beta_{4,1} = \mu_{5,1,0} + \beta_{5,0} = -1.17 + 0$$

2
$$\beta_{4,0} = 0.80 - (0.80) = 0$$
, $\beta_{4,1} = -1.17 - (0.80) = -1.97$

MAP algorithm

LExample:Solution

Backward calculation

Example: Backward calculation: Stage 4 to 3

 $\beta_{0,0}$

 $\beta_{1.0}$

 $\beta_{2.0}$

-1.97 $\beta_{3.1}$

States backward probabilities

$$\beta_{3,0} = \log \left(e^{\mu_{3,0,0} + \dot{\beta}_{4,0}} + e^{\mu_{3,0,1} + \beta_{4,1}} \right) = \log \left(e^{3.1+0} + e^{-4.54 + (-1.97)} \right) = 3.10$$

$$\beta_{3,1} = \log \left(e^{\mu_{3,1,0} + \beta_{4,0}} + e^{\mu_{3,1,1} + \beta_{4,1}} \right) = \log \left(e^{2.53 + 0} + e^{-10.04 + (-1.97)} \right) = 2.53$$

$$\beta_{4,0} = 3.10 - (3.10) = 0, \ \beta_{4,1} = 2.53 - (3.10) = -0.57$$

Example:Solution

Backward calculation

Example: Backward calculation: Stage 4 to 3

$eta_{ extsf{0,0}}$	$eta_{ exttt{1,0}}$	$eta_{2,0}$	3.10	0	0	
	\bigcirc		\bigcirc	\mathcal{A}	\bigcirc	
		2.53				
			0 100			
	$eta_{1,1}$	$eta_{2,1}$	$2.5\overline{3}^{10.0}$	-1.97		

States backward probabilities

$$\begin{split} \beta_{3,0} &= \log \left(e^{\mu_{3,0,0} + \dot{\beta}_{4,0}} + e^{\mu_{3,0,1} + \beta_{4,1}} \right) = \\ \log \left(e^{3.1 + 0} + e^{-4.54 + (-1.97)} \right) &= 3.10 \\ \beta_{3,1} &= \log \left(e^{\mu_{3,1,0} + \beta_{4,0}} + e^{\mu_{3,1,1} + \beta_{4,1}} \right) = \\ \log \left(e^{2.53 + 0} + e^{-10.04 + (-1.97)} \right) &= 2.53 \end{split}$$

 $\beta_{4,0} = 3.10 - (3.10) = 0, \ \beta_{4,1} = 2.53 - (3.10) = -0.57$

- MAP algorithm
- Example:Solution
- Backward calculation

Example: Backward calculation: Stage 4 to 3

States backward probabilities

$$\beta_{3,0} = \log \left(e^{\mu_{3,0,0} + \dot{\beta}_{4,0}} + e^{\mu_{3,0,1} + \beta_{4,1}} \right) = \\ \log \left(e^{3.1+0} + e^{-4.54 + (-1.97)} \right) = 3.10 \\ \beta_{3,1} = \log \left(e^{\mu_{3,1,0} + \beta_{4,0}} + e^{\mu_{3,1,1} + \beta_{4,1}} \right) = \\ \log \left(e^{2.53+0} + e^{-10.04 + (-1.97)} \right) = 2.53$$

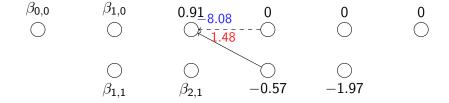
2 $\beta_{4,0} = 3.10 - (3.10) = 0$, $\beta_{4,1} = 2.53 - (3.10) = -0.57$

MAP algorithm

Example:Solution

Backward calculation

Example: Backward calculation: Stage 3 to 2



States backward probabilities

$$\beta_{2,0} = \log \left(e^{\mu_{3,0,0} + \beta_{3,0}} + e^{\mu_{3,0,1} + \beta_{3,1}} \right) = \log \left(e^{-8.08 + 0} + e^{1.48 + (-0.57)} \right) = 0.91$$

$$\beta_{2,1} = \log \left(e^{\mu_{3,1,0} + \beta_{3,0}} + e^{\mu_{3,1,1} \beta_{3,1}} \right) = \log \left(e^{-3.49 + 0} + e^{1.14 + (-0.57)} \right) = 0.59$$

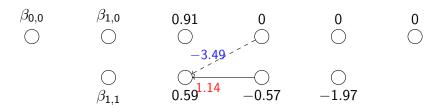
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 か��

MAP algorithm

Example:Solution

LBackward calculation

Example: Backward calculation: Stage 3 to 2



States backward probabilities

$$eta_{2,0} = \log \left(e^{\mu_{3,0,0} + eta_{3,0}} + e^{\mu_{3,0,1} + eta_{3,1}}
ight) = \\ \log \left(e^{-8.08 + 0} + e^{1.48 + (-0.57)}
ight) = 0.91 \\ eta_{2,1} = \log \left(e^{\mu_{3,1,0} + eta_{3,0}} + e^{\mu_{3,1,1} eta_{3,1}}
ight) = \\ \log \left(e^{-3.49 + 0} + e^{1.14 + (-0.57)}
ight) = 0.59$$

$$2 \ eta_{2,0} = 0.91 - (0.91) = 0, \ eta_{2,1} = 0.59 - (0.91) = -0.32$$

Example: Solution

Backward calculation

Example: Backward calculation: Stage 3 to 2

 $\beta_{0,0}$

0

-0.32

States backward probabilities

$$\begin{split} \beta_{2,0} &= \log \left(e^{\mu_{3,0,0} + \beta_{3,0}} + e^{\mu_{3,0,1} + \beta_{3,1}} \right) = \\ \log \left(e^{-8.08 + 0} + e^{1.48 + (-0.57)} \right) &= 0.91 \\ \beta_{2,1} &= \log \left(e^{\mu_{3,1,0} + \beta_{3,0}} + e^{\mu_{3,1,1} \beta_{3,1}} \right) = \\ \log \left(e^{-3.49 + 0} + e^{1.14 + (-0.57)} \right) &= 0.59 \end{split}$$

$$\beta_{2,0} = 0.91 - (0.91) = 0$$
, $\beta_{2,1} = 0.59 - (0.91) = -0.32$

MAP algorithm Example:Solution

Backward calculation

Example: Backward calculation: Stage 3 to 2

 $\beta_{0,0}$ 0 -0.32-1.97

States backward probabilities

$$\beta_{1,0} = \log \left(e^{\mu_{2,0,0} + \beta_{2,0}} + e^{\mu_{2,0,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-4.24 + 0} + e^{-0.59 + (-0.32)} \right) = -0.88 \\ \beta_{1,1} = \log \left(e^{\mu_{2,1,0}\beta_{2,0}} + e^{\mu_{2,1,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-1.42 + 0} + e^{-2.7 + (-0.32)} \right) = -1.24$$

2
$$\beta_{1,0} = -0.88 - (-0.88) = 0,$$
 $\beta_{1,1} = -1.24 - (-0.88) = -0.36$

0

MAP algorithm

Example:Solution

Backward calculation

Example: Backward calculation: Stage 3 to 2

 $\beta_{0,0}$

0

◆ロ → ◆ 個 → ◆ 恵 → ◆ 恵 → り へ ②

States backward probabilities

$$\begin{split} \beta_{1,0} &= \log \left(e^{\mu_{2,0,0} + \beta_{2,0}} + e^{\mu_{2,0,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-4.24 + 0} + e^{-0.59 + (-0.32)} \right) &= -0.88 \\ \beta_{1,1} &= \log \left(e^{\mu_{2,1,0} \beta_{2,0}} + e^{\mu_{2,1,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-1.42 + 0} + e^{-2.7 + (-0.32)} \right) &= -1.24 \end{split}$$

2
$$\beta_{1,0} = -0.88 - (-0.88) = 0,$$
 $\beta_{1,1} = -1.24 - (-0.88) = -0.36$

MAP algorithm

Example:Solution

Backward calculation

Example: Backward calculation: Stage 3 to 2

 $\beta_{0,0}$

States backward probabilities

$$\begin{split} \beta_{1,0} &= \log \left(e^{\mu_{2,0,0} + \beta_{2,0}} + e^{\mu_{2,0,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-4.24 + 0} + e^{-0.59 + (-0.32)} \right) &= -0.88 \\ \beta_{1,1} &= \log \left(e^{\mu_{2,1,0}\beta_{2,0}} + e^{\mu_{2,1,1} + \beta_{2,1}} \right) = \\ \log \left(e^{-1.42 + 0} + e^{-2.7 + (-0.32)} \right) &= -1.24 \end{split}$$

2
$$\beta_{1,0} = -0.88 - (-0.88) = 0,$$
 $\beta_{1,1} = -1.24 - (-0.88) = -0.36$

MAP algorithm

Example:Solution

Forward calculation

Example: Forward calculation

- start from the beginning of the trellis and calcualate the sum of the probabilitites
- Init the probability of the first state at the stage to 1 (in log domain to 0): $\alpha_{0.0}=0$
 - ① By using the state probabilities k and the probabilities on the transitions calculate the probabilities for the states k+1 $\alpha_{k,i} = \log\left(\sum_{i} e^{\mu_{k,i,j} + \alpha_{k-1,j}}\right)$

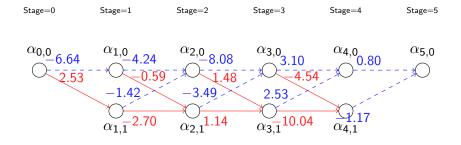
(If the values are in the log domain for the sum you have to convert them back to the probability domain.)

2 Normilize (needed for the numerical stability) $\alpha_{k,\#} = \alpha_{k,\#} - \max(\alpha_{k,\#})$

MAP algorithm

LExample:Solution
LForward calculation

Example: Forward calculation, Forward trellis



$$lpha_{stage,state}$$
 $lpha_{k,i} = \log\left(\sum_{j} e^{\mu_{k,i,j} + lpha_{k-1,j}}\right)$

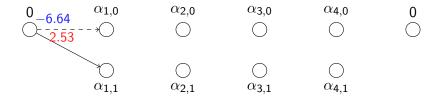
4 D > 4 B > 4 B > 4 B > 9 Q C

MAP algorithm

LExample:Solution

Forward calculation

Example: Forward calculation: Stage 0 to 1



1 The new state probabilities

$$\alpha_{1,0} = \mu_{1,0,0} + \alpha_{0,0} = -6.64$$

$$\alpha_{1,1} = \mu_{1,1,0} + \alpha_{0,0} = 2.53$$

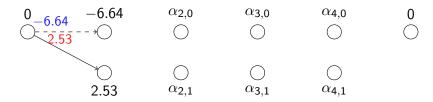
2
$$\alpha_{1.0} = -6.64 - 2.53 = -9.17$$
, $\alpha_{1.1} = 2.53 - 2.53 = 0$

MAP algorithm

Lexample:Solution

Forward calculation

Example: Forward calculation: Stage 0 to 1



1 The new state probabilities

$$\alpha_{1,0} = \mu_{1,0,0} + \alpha_{0,0} = -6.6$$

$$\alpha_{1,1} = \mu_{1,1,0} + \alpha_{0,0} = 2.53$$

$$\alpha_{1,0} = -6.64 - 2.53 = -9.17, \ \alpha_{1,1} = 2.53 - 2.53 = 0$$

MAP algorithm Example: Solution Forward calculation

Example: Forward calculation: Stage 0 to 1

0

-9.17

 $lpha_{2.0}$

lpha3.0

 $lpha_{3.1}$

 $\alpha_{2.1}$

 $\alpha_{4.1}$

 α 4.0

1 The new state probabilities

$$\alpha_{1,0} = \mu_{1,0,0} + \alpha_{0,0} = -6.64$$

 $\alpha_{1,1} = \mu_{1,1,0} + \alpha_{0,0} = 2.53$

2
$$\alpha_{1,0} = -6.64 - 2.53 = -9.17$$
, $\alpha_{1,1} = 2.53 - 2.53 = 0$

MAP algorithm Example:Solution Forward calculation

Example: Forward calculation: Stage 1 to 2

lpha3.0

lpha4.0

0

 $\alpha_{3.1}$

 $\alpha_{4.1}$

$$\alpha_{2,0} = \log \left(e^{\mu_{2,0,0} + \alpha_{1,0}} + e^{\mu_{2,0,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{-4.24 + (-9.17)} + e^{-1.42 + 0} \right) = -1.42$$

$$\alpha_{2,1} = \log \left(e^{\mu_{2,1,0} + \alpha_{1,0}} + e^{\mu_{2,1,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{1.48 + (-9.17)} + e^{-1.14 + 0} \right) = -2.70$$

②
$$\alpha_{2,0} = -1.42 - (-1.42) = 0$$
, $\alpha_{2,1} = -2.70 - (-1.42) = -1.28$

MAP algorithm

Example:Solution

Forward calculation

Example: Forward calculation: Stage 1 to 2

-9.170 _0.59

-1.42

lpha3.0

 $\alpha_{4,0}$

 $lpha_{4.1}$

$$\alpha_{2,0} = \log \left(e^{\mu_{2,0,0} + \alpha_{1,0}} + e^{\mu_{2,0,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{-4.24 + (-9.17)} + e^{-1.42 + 0} \right) = -1.42$$

$$\alpha_{2,1} = \log \left(e^{\mu_{2,1,0} + \alpha_{1,0}} + e^{\mu_{2,1,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{1.48 + (-9.17)} + e^{-1.14 + 0} \right) = -2.70$$

◆ロ → ◆ 個 → ◆ 恵 → ◆ 恵 → り へ ②

MAP algorithm

LExample:Solution

Forward calculation

Example: Forward calculation: Stage 1 to 2

-9.17

lpha3.0

lpha4.0

 $\alpha_{3.1}$

 $\alpha_{4.1}$

$$\alpha_{2,0} = \log \left(e^{\mu_{2,0,0} + \alpha_{1,0}} + e^{\mu_{2,0,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{-4.24 + (-9.17)} + e^{-1.42 + 0} \right) = -1.42$$

$$\alpha_{2,1} = \log \left(e^{\mu_{2,1,0} + \alpha_{1,0}} + e^{\mu_{2,1,1} + \alpha_{1,1}} \right)$$

$$= \log \left(e^{1.48 + (-9.17)} + e^{-1.14 + 0} \right) = 2.70$$

2
$$\alpha_{2,0} = -1.42 - (-1.42) = 0$$
, $\alpha_{2,1} = -2.70 - (-1.42) = -1.28$

Forward calculation

Example: Forward calculation: Stage 2 to 3

$$0.8 - 08 - 4.7$$

$$-3.49$$
 -1.28

$$\mathop{\bigcirc}\limits_{lpha_{3,1}}$$

$$\alpha_{4,1}$$

 α 4.0

1
$$\alpha_{3,0} = \log(e^{\mu_{3,0,0} + \alpha_{2,0}} + e^{\mu_{3,0,1} + \alpha_{2,1}}) = \log(e^{-8.08 + 0} + e^{-3.49 + (-1.28)}) = -4.73$$

$$\alpha_{3,1} = \log(e^{\mu_{3,1,0} + \alpha_{2,0}} + e^{\mu_{3,1,1} + \alpha_{2,1}}) = \log(e^{-4.54 + 0} + e^{-10.04 + (-1.28)}) = 1.66$$

2
$$\alpha_{3,0} = -4.73 - 1.66 = -6.40$$
, $\alpha_{3,1} = 1.66 - 1.66 = 0$

MAP algorithm

Example:Solution

Forward calculation

Example: Forward calculation: Stage 2 to 3

$$\alpha_{4,0}$$

-4.73

$$-1.28^{-1.4}$$

$$\alpha_{4,1}$$

1
$$\alpha_{3,0} = \log(e^{\mu_{3,0,0} + \alpha_{2,0}} + e^{\mu_{3,0,1} + \alpha_{2,1}}) = \log(e^{-8.08 + 0} + e^{-3.49 + (-1.28)}) = -4.73$$

$$\begin{array}{l} \alpha_{3,1} = \log \left(e^{\mu_{3,1,0} + \alpha_{2,0}} + e^{\mu_{3,1,1} + \alpha_{2,1}} \right) = \\ \log \left(e^{-4.54 + 0} + e^{-10.04 + (-1.28)} \right) = 1.66 \end{array}$$

②
$$\alpha_{3,0} = -4.73 - 1.66 = -6.40$$
, $\alpha_{3,1} = 1.66 - 1.66 = 0$

MAP algorithm

LExample:Solution

Forward calculation

Example: Forward calculation: Stage 2 to 3

0

$$-9.17$$

$$-6.40$$

$$\alpha_{4,0}$$

$$\alpha_{4.1}$$

1
$$\alpha_{3,0} = \log(e^{\mu_{3,0,0} + \alpha_{2,0}} + e^{\mu_{3,0,1} + \alpha_{2,1}}) = \log(e^{-8.08 + 0} + e^{-3.49 + (-1.28)}) = -4.73$$

$$\alpha_{3,1} = \log \left(e^{\mu_{3,1,0} + \alpha_{2,0}} + e^{\mu_{3,1,1} + \alpha_{2,1}} \right) = \log \left(e^{-4.54 + 0} + e^{-10.04 + (-1.28)} \right) = 1.66$$

2
$$\alpha_{3,0} = -4.73 - 1.66 = -6.40$$
, $\alpha_{3,1} = 1.66 - 1.66 = 0$

MAP algorithm

LExample:Solution

Forward calculation

Example: Forward calculation:

0

$$-9.17$$

$$-6.40$$

 \bigcirc

$$\alpha_{4,1}$$

Bite aposteriori Pb

- The bit aposteriori probability is calculated by combing forward probability is states k backward probability in states k+1 and transitions probabilities.
- $\log \frac{p(y_k|x_k=1,x)}{p(y_k|x_k=0,x)}$ $\sum_{\substack{x_k=1 \\ \sum_{x_k=0}}} e^{\alpha_{k,i}+\mu_{k,i,j}+\beta_{k+1,j}}$

◆ロ → ◆部 → ◆ き → ◆ き → り へ で の へ で

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 1

$$\log \left(\frac{e^{\alpha_{0,0} + \mu_{1,0,1} + \beta_{1,1}}}{e^{\alpha_{0,0} + \mu_{1,0,0} + \beta_{1,0}}} \right) = \log \left(\frac{e^{0 - 2.53 + (-0.36)}}{e^{0 - 6.63 + 0}} \right)$$

$$= 2.17 - (-6.64) = 8.81$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

MAP algorithm

L_{Example:Solution}

Forward calculation

Example: a-posteriori for the bits: bit 1

$$\log \left(\frac{e^{\alpha_{0,0} + \mu_{1,0,1} + \beta_{1,1}}}{e^{\alpha_{0,0} + \mu_{1,0,0} + \beta_{1,0}}} \right) = \log \left(\frac{e^{0 - 2.53 + (-0.36)}}{e^{0 - 6.63 + 0}} \right)$$

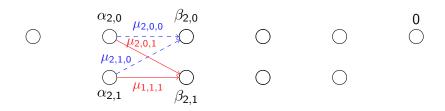
$$= 2.17 - (-6.64) = 8.81$$

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 2



$$\begin{split} \log\left(\frac{e^{\alpha_{1,0}+\mu_{2,0,1}+\beta_{2,1}}+e^{\alpha_{1,1}+\mu_{1,1,1}+\beta_{2,1}}}{e^{\alpha_{1,0}+\mu_{2,0,0}+\beta_{2,0}}+e^{\alpha_{1,1}+\mu_{2,1,0}+\beta_{2,0}}}\right)\\ = \log\left(e^{-9.17-4.24+0}+e^{0-1.42+0}\right) - \log\left(e^{-9.17-0.59-0.32}+e^{0-2.70-0.32}\right)\\ = -3.14 \end{split}$$

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 2

$$\log \left(\frac{e^{\alpha_{1,0} + \mu_{2,0,1} + \beta_{2,1}} + e^{\alpha_{1,1} + \mu_{1,1,1} + \beta_{2,1}}}{e^{\alpha_{1,0} + \mu_{2,0,0} + \beta_{2,0}} + e^{\alpha_{1,1} + \mu_{2,1,0} + \beta_{2,0}}} \right)$$

$$= \log \left(e^{-9.17 - 4.24 + 0} + e^{0 - 1.42 + 0} \right) - \log \left(e^{-9.17 - 0.59 - 0.32} + e^{0 - 2.70 - 0.32} \right)$$

$$= -3.14$$

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 3

$$\begin{split} \log\left(\frac{e^{\alpha_{2,0}+\mu_{3,0,1}+\beta_{3,1}}+e^{\alpha_{2,1}+\mu_{3,1,1}+\beta_{3,1}}}{e^{\alpha_{2,0}+\mu_{3,0,0}+\beta_{3,0}}+e^{\alpha_{2,1}+\mu_{3,1,0}+\beta_{3,0}}}\right)\\ = \log\left(e^{0+8.08+0}+e^{-1.28-3.49-0}\right) - \log\left(e^{0+1.47-0.57}+e^{-1.28-1.14-0.57}\right)\\ = 5.64 \end{split}$$

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 3

$$\begin{split} \log\left(\frac{e^{\alpha_{2,0}+\mu_{3,0,1}+\beta_{3,1}}+e^{\alpha_{2,1}+\mu_{3,1,1}+\beta_{3,1}}}{e^{\alpha_{2,0}+\mu_{3,0,0}+\beta_{3,0}}+e^{\alpha_{2,1}+\mu_{3,1,0}+\beta_{3,0}}}\right)\\ = \log\left(e^{0+8.08+0}+e^{-1.28-3.49-0}\right) - \log\left(e^{0+1.47-0.57}+e^{-1.28-1.14-0.57}\right)\\ = 5.64 \end{split}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♡

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 4

$$\begin{split} \log\left(\frac{e^{\alpha_{3,0}+\mu_{4,0,1}+\beta_{4,1}}+e^{\alpha_{3,1}+\mu_{4,1,1}+\beta_{4,1}}}{e^{\alpha_{3,0}+\mu_{4,0,0}+\beta_{4,0}}+e^{\alpha_{3,1}+\mu_{4,1,0}+\beta_{4,0}}}\right) \\ = \log\left(e^{-6.40+3.10+0}+e^{0+2.53+-1.97}\right) - \log\left(e^{-6.40-4.54+0}+e^{0-10.04-1.97}\right) \\ = -1.41 \end{split}$$

MAP algorithm

Example:Solution

Forward calculation

Example: a-posteriori for the bits: bit 4

$$\begin{split} \log\left(\frac{e^{\alpha_{3,0}+\mu_{4,0,1}+\beta_{4,1}}+e^{\alpha_{3,1}+\mu_{4,1,1}+\beta_{4,1}}}{e^{\alpha_{3,0}+\mu_{4,0,0}+\beta_{4,0}}+e^{\alpha_{3,1}+\mu_{4,1,0}+\beta_{4,0}}}\right) \\ = \log\left(e^{-6.40+3.10+0}+e^{0+2.53+-1.97}\right) - \log\left(e^{-6.40-4.54+0}+e^{0-10.04-1.97}\right) \\ = -1.41 \end{split}$$

