Turbo coding

Turbo coding

Kalle Ruttik

Communications Laboratory
Helsinki University of Technology

April 24, 2007

Turbo coding

- Historical review

Introduction

Channel coding theorem suggest that a randomly generated code
with appropriate distribution is likely a good code if its block
length is high.
Problem: Decoding
- In case of long block lengths the codes without a structure are
difficult to decode.

A fully random codes can be avoided. The codes whose spectrum

resembles spectrum of a random code are good codes.

Such random like codes can be generated by using interleaver.
Interleaver performs permutation of the bit sequence.

Permutation can be either of information bits sequence or of
the parity bits.

Turbo coding

- Historical review

Parallel concated convolutional codes (PCCC)

Encoder
1
Interleaver to channel
T
\—) Encoder
2

Figure: Encoder

Turbo coding
L Historical review

Decoding turbo codes

e A parallel-concatenated convolutional code cannot be decoded
by a standard serial dynamic programming algorithm.

- The number of states considered in trellis evaluation of two
interleaved code is squared compared to the forward-backward
algorithm on one code.

- Changing a symbol in one part of the turbo-coded codeword
will affect possible paths in this part in one code and also the
distant part in other code where this bit is " interleaved" .

- Optimal path in one constituent codeword does not have to be
optimal path in the other codeword.

Turbo coding

- Historical review

Berrou approach

e Calculate the likelihood of each bit of the original dataword of
being 0 or 1 accordingly to the trellis of the first code.

e The second decoder uses the likelihood from the first decoder
to calculate the new probability of the received bits but now
accordingly to the received sequence of the second coder y(z).

e Bit estimate from the second decoder is feed again into first
decoder.

e Instead of serially decoding each of the two trellises we decode
both of them in parallel fashion.

Turbo coding

L Historical review

Decoding turbo codes

(~
[Random lik)
andom like -
codes Pseudo Probability
random reassesment
codes based decoding
()
Inteleaving Turbo codes _
Iterative
- </ decoding

\
Combining several codes

_ J

Figure: The ideas influencing evolution of turbo coding. Accordingly to
fig. 1 from Battail97.

Turbo coding

I—Code as a constraint

Code as a constraint

e The bit estimates calculated based on the coder structure are
aposteriori probabilities of the bit constrained by the code.

e Contraint means that among of all possible bit sequences only
some are allowed - they are possible codewords. The
codewords limit the possible bit sequecnes.

e The aposteriori probability is calculated over the probabilities
of possible codewords.

e The rule of the conditional probability

P (A, B)
P(A|lB) =
(A18)= "5y
where A correspond to a event that a certain bit in the
codeword is 1 (or zero). B requires that the bit sequence is

allowable codeword.

Turbo coding
I—Code as a constraint

L Repetition code

Example: repetition code

e We have three samples c¢;,c,c3.

e If to take the samples one by one they can be either zero or
one.

e We have additional information: the samples are generated as
a repetition code.

e Let denote the valid configurations as S = {(c1, &, c3)}.

e The set of possible codewords (the constraint set) is

S =1{(0,0,0),(1,1,1)}.

Turbo coding
I—Code as a constraint

I—Repetition code
e In our case the a posterior probability for the sample c; =1 is

z:(f—‘17<32,63)65 P (C17 2, C3)
post __ o=1

py =
Z(Cl,r:z,q)esp (c1,2,c3)

In the numerator is summation over all configurations in S
such that ¢ = 1, in the denominator is the normalization, the
sum of all the probabilities of all configurations in S.

Turbo coding
I—Code as a constraint

L Repetition code

Example: Repetition code
p(ci, 2, c3)
p(0,0,0)

20 p(c1,c,c3)
® "> (c; =0) = T p(q,Zq,ca)Jr >

=0 =

-

p(c1,c2,c3)
1

21 p(c1,c2,¢3)
. ppost(c2 _ 1) _ S o >

p(c1,c,c3)+
C2:O

.

p(c1,c2,c3)
cp=1

p(1,1,1)

In the repetition code is only one possible codeword with ¢ =1
and onw codeword with ¢ =0

Turbo coding
I—Code as a constraint
I—Repetition code

o If the prior probabilities are independent the joint probability
can be factorised

P(Cl, Co, C3) = P(Cl) P(Cz) P(C3)

e The values for the prior probabilities could be acquired by
measurements.

For example if we are handling channel outputs them
p(ck) = p(yk|xk)

o A numerical excample: We have observed the samples and
concluded that the samples have values 1 with the following
probabilities
P(Cl =].) = %,P(C2 = 1) = %,P(C3 = 1) = %,
where ¢; stands for the i-th sample and i = 1,2, 3.

What is the probability that the second bit is one?

Turbo coding
I—Code as a constraint
I—Repetition code

e The probability of the second sample being one is

ppost _ P1P2P3
2 p1p2p3z + (1 — p1) (1 — p2) (1 — p3)

e |n numerical values

1,11
post 4°2°3 _
pPot = = 0.1429
(T N
e The probability of py(c; = 0)

o)

o =0) = (13 2 3
S T

— 08571=1- pb*

Turbo coding
I—Code as a constraint

I—Repetition code
e By using likelihood ratio we can simplify further

2(517527(_3)65 P(C17C25C3)

post

P2 — C2:1
(1 s ost) Z(Cl,cz,q)es P(Cl,C27C3)
C2—1
= p1-p2-p.

(1- P1)(1 Pz) (1- P3)
(1*P1) (1*132) (1*P3)

e In the logarithmic domain
Pla=1)ple=1)p(s=1)
" =0p(c=0)p(c=0)
pla=1) rle=1) pla=1)
p(ca=0) ple=0) p(s=0)
LPH(c3) = L(c1) + L(c2) + L(cs)

=In

Turbo coding
I—Code as a constraint

L Repetition code

e Probability 0.5 indicates that nothing is known about the bit.
L(C2) =0

e Even if we do not know aything about the bit but we know
probabilties for the other bits we can calculate the aposteriori
probability for the unknown bit.

LpOSt(CQ) = L(Cl) —+ L(C3)

e The posteriori probability calculation for a bit can be
separated into two parts:

— part describing prior probability

— part impacted by the constraint imposed by the code. This
later part is calculated only based on the probabilities of other
bits.

Turbo coding
- Parity-check code

e Assume now that there can be even number of ones among
the three samples S = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)}

e The first two bits are either 0 or 1 the third bit is calculated
as XOR of first two bits.

e Assume the measured probability for the second bit is 0.5

e The posterior probability of the second sample is

post P1 (1 _p3)+(1 _Pl)P3

p
2 ppztpr-(L—p3)+(1—p1)-p3+(1—p1)- (1 ps)

e The probability that the second sample is 1 is given by the
probability that exactly one of the other two samples is 1.

e The probability that the second sample is 0 is given by the

probability that both other samples are 0 or both of them are
1.

Turbo coding
L Parity-check code

Example: Repetition code

p(ct, 2, c3)
p(0,0,0)

® 2 pler,e,03)

® @ " (c, =0) = D p(chc;ca)Jr > ple,c2,63)
p(0,1,1) o -

® > plee,6)
p(1,0,1) ® PP = 1) = yom g 2=, Pleves)

p(l,l,O) :/ 20

Turbo coding
- Parity-check code

o Likelihood ratio for the second sample aposterior probability is

pPot (e =1) __p2(pr(1—=p3)+ (L —p1)ps)
pPost(c; =0) (L —p2)(pips+ (1= p1) (1 —ps3))

Turbo coding
L Parity-check code

Parity check in log domain

e In logarithmic domain can be separated the prior for the bit
and information from the other bits.

polce=1)-p((caDecs)=1)\ _
o8 <pz<c2 —0) p((c®c) = 0)) -

n <P2(C2 =1) pi(ca =1)ps(cs =0) + pr(c1 = 0)ps(c3 = 1))
p2(c2 =0) pi(ct =0)ps(c3 =0) + pi(c1 = 1)p3(cz = 1)

pi(c1 = 1)p3(c3 = 0) + p1(c1 = 0)p3(c3 = 1))

fale) +n (Pl(cl = 0)ps(cs = 0) + pi(er = 1)p3(ez = 1)

Turbo coding
- Parity-check code

Probabilities in log domain

e Here we give the probability calculation folmulas for the
binary code, GF(2).
e The log-likelihood ratio (LLR) of c is

o ple=1_ple=1)
He) = ne=0) = "Tople= 1)
p(c=1) e .

11el0 11el@

1 e L)
P(C_O) - 1_P(C_1)_ 1+eL(C) - 1+e—L(C)

Turbo coding
L Parity-check code

Incorporating proababilities from different encoders

e Often we have two or more independent ways to calculate the
aposteriori probability of the bit.

e The bit estimates from different sources are similar to
repetition code. All the estiamtes have to have the same bit
value.

e Because all the estiamtes have to be either 0 or 1 in log
domain we can simple sum together the loglikelihood ratios
from different estimations.

Turbo coding
I—Example: Single Parity Check Code

Single Parity Check Product Code (Example)

e SPC product code - a simple example of a concatenated code
e Two separate coding steps - horizontal, vertical

Figure: Two dimensional product code

ki x ko data array d; n, — ko parity bits pp; n1 — ky parity bits p,,
Len, Ley stand for the extrinsic LLR values learned from the
horizontal and vertical decoding steps.

Turbo coding
I—E><amp|e: Single Parity Check Code

Numerical example

di d> | d3 | da | pih | P2n | P1v | Pov
+1 +1|4+1 | -1 +1 | -1 +1 | -1

[025[20[50[10]1.0[-15]20]-25|

d & | P Ml Te(xi) = 0.25 | Lc(x) = 2.0 Lc(xi2) = 1.0
ds da por =+ | — | — |=[Ls)=50 Lc(xa) = 1.0 Lc(x34) = —1.5
P1v Pav + _ Le(x3) = 2.0 Le(xa) = —2.5

Turbo coding
I—Example: Single Parity Check Code

Decoding Algorithm

1. Set prior information p(d) = 0.5 for all d L(d) = 0.

2. Sum the observed probability and prior probability
Le(dy) + L(dy).
3. Decode horizontally. Obtain the bit probabilities based on the

constraint posed by the horisontal code. The result is called
horizontal extrinsic information.

- The parity bit is generated by the xor of information bits in the
horisontal line.

- The extrinsic information can be generated as the aposteriori
probability calculation accordingly to parity check. For example

extr(g\ — 1 [P{92=1)P(P1n = —1) + p(d> = ~1)p(p1n = 1)
() = (P(dz — D)p(pis = —1) + p(dh = Dplpus = 1))

Turbo coding
I—E><amp|e: Single Parity Check Code

4. Set L(dy) = L& (dy).
5. Combine the aposteriori horisontal and priori information for

each bit. For example for the bit 1

Lcombined(dl) — Lc(dl) + L(al)
eLcombined(d1)
(1 + e[_combined(dl))

6. Decode vertically. In computations instead of p use p°©.
Obtain the vertical extrinsic information for each bit. For
example

p(ch = 1) =

extr(gy — | P =1)p(pry = 1) + p(ds = —1)p(p1v = 1)
Lv (dl) = (pc(d3 = —l)p(plv = _]_) + pc(d3 — l)P(Plv _ 1)

)

Turbo coding
I—Example: Single Parity Check Code

Decoding example ...

7. If the interations have not finished

- combine the information of the aposteriori vertical L{*"(d)
and priori information L(dy) for each bit.

- go back to stage 2.

else

- Combine all the information for the bit the priori aposteriori
vertical and horisontal.
L9(dy) = Le(dy) + LT (dy) + LE¥ (dg)

- Compare the likelihood ratio of the bit with the decision level

(0).

Turbo coding
I—E><amp|e: Single Parity Check Code

Decoding example ...

The soft output for the received signal corresponding to data d;
L(d;) = Le(xi) + L(di) + L (d)

Decode horizontally
extr _ p(da=1)p(p1n==1)+p(dr=—=1)p(p1n=1)
L (d) = In (p(dz:—l)p(lglh:—lw(dz:1)p(p12:1))
= 0.74 = newl(dy)

L& (dp) = 40.12 = newl (db)

L& (d3) = —0.60 = newl (ds)
L& (dy) = —1.47 = newl(ds)

Turbo coding
I—Example: Single Parity Check Code

+0.25 | +2.0 | | +0.74 | +0.12

50 5101 T—oe0 =147 after 1st horizontal decoding

Decode vertically
L& (dy) = +0.33 = newl(d;)
L& (dy) = +0.09 = newl (d,)
L& (d3) = —0.36 = newl(ds)
LS (dy) = —0.26 = newl(ds)

+0.33 [$0.09 |- : : :
036 | =026 Extrinsic information after 1st vertical decoding
Soft output after 1st iteration L(d) = Lc(x) + Len(d) + Lev(d)
+0.25 | 42 n +0.74 | +0.12 i +0.33 | +0.09 | | +1.31 | +2.20
+5.0 +1 —0.60 | —1.47 +0.36 | —0.26 | | +4.75 | —0.74

Turbo coding
I—E><amp|e: Single Parity Check Code

We can see an iterative process:
1 Decode first code and calculate extrinsic information for each
bit.
- In first iteration the information from other code is zero.
2 Decode the second code by using extrinsic information from
the first decoder.

3 Return to the first step by using the extrinsic information from
the second decoder.

Turbo coding
I—Turbo code

Parallel concated convolutional codes (PCCC)

Encoder

1

Interleaver to channel

™
\ Encoder

2

Figure: Encoder

From demod
not used not used

SISO demod_r—rs5
' :

s -
e decision
u

Figure: Decoder

Turbo coding
I—Turbo code

Parallel concated convolutional codes (PCCC)

e Encoder contains two or more systematic convolutional
encoders

e The constituent encoders code the same interleaved data
stream

e The systematic bits are transmitted only once

e |n reciever the extrinsic information is calculated for the
information bit based on one constituent code and feed to the
decoder of other code

Turbo coding
I—Turbo code

Serial concated convolutional codes (SCCC)

. Outer Interleaver Inner to channel
Encoder 1 T Encoder 2
Figure: Encoder
From demod not used
———> SISO [—
1 o SISO |——
™ P
0 9 decision

Interleaver

™

Figure: Decoder

Turbo coding
I—Turbo code

Serial concated convolutional codes (SCCC)

- Code is formed by concatenating two encoders

- The output coded bit stream from the outer encoder is
interleaved and feed to the inner encoder

- The decoder

- The inner decoder calculates the loglikelihoods of information
symbols at the output of the inner decoder and deinterleaver
them

- The outer decode is decoded and loglikelihoods for the coded
bits are calculated

- The coded bits loglikelihoods are interleaved and feed back to
the inner decoder

- The decision are made after the decoding iterations on the
loglikelihoods of the information bits at the output of the outer
decoder

Turbo coding

I—Algorithms for iterative turbo processing

Algorithms for Iterative (Turbo) Data Processing

Requirements
Accept soft-inputs in the form

Detection Algorhms of a priori probabilities or

— log-likelihood ratios
MAP Viterbi
Produce APP for output data
Soft-Input Soft-Output
- MAP: Maximum A

Posteriori

log-MAP SOVA

Modified

max-log-MAP
S (symbol-by-symbol)
Symbol-by-symbol Sequence
detection detection - SOVA: Soft OUtpUt

Viterbi Algorithm

Turbo coding
I—Algorithms for iterative turbo processing

I—Symbol by symbol detection

MAP algorithm

e MAP algorithm operates in probability domain.

e The probability of all codewords passing some particular edge
from initial state / to final state j at stage k is

Pl (bris) = srymy X Akovit My - By
L7 (by,iy

e When probablity is expressed by loglikelihood value we have to
deal with numbers in very large range. (overflows in
computers).

Simplification of MAP: Log-MAP algorithm

e Log-MAP algorithm is a transformation of MAP into
logarithmic domain.

Turbo coding
I—Algorithms for iterative turbo processing
I—Symbol by symbol detection

Modification to MAP algorithm

e The MAP algorithm logarithmic domain is expressed with
replaced computations

- Multiplication is converted to addition.
- Addition is converted to maxx () operation.

max i (x.y) = log (¢" + &) = max (x,y) +log (1+ &™)

e The terms for calculating the probabilities in the trellis are

converted
agj = log(Ak;)
Brj = log(Bxk,)
Yeij = log(Myij)

Turbo coding
I—Algorithms for iterative turbo processing

I—Symbol by symbol detection

Modification to MAP algorithm
e The complete logMAP algorithm is

L(be) = log Y Axcri- Myij- By
b1
—log > Ar1i- My B
be=0

= maxx (k—1,i + Vi,ij + Bryj)
2

— max (ak—1,i +Vk,ij + Byj)
e

ag,; = log (Z A1, Mk,i1,i>

n

Prj = log | 22 Mirjs - Bk+1,jl>
J1

Turbo coding
I—Algorithms for iterative turbo processing

I—Symbol by symbol detection

Max-Log-MAP decoding Algorithm

e In summation of probabilities in Log-MAP algorithm we are
using max * (-) operation.
e The max « (-) requires to convert LLR value into exponential
and after adding 1 to move back into log domain.
e Simplifications
- We can replace log (1 + e~*=¥I) by a lookup table.
- We can skip the term = Max-Log-Map.

Turbo coding
I—Algorithms for iterative turbo processing

I—Symbol by symbol detection

Max-Log-MAP decoding Algorithm

— — Q—1,iy TYk, iy i
aki = log E Ak-1,iy - Mi,iy,i | = log E et Tk,
, -

i
= max% (vileak—l,i1+7k,il,i) A~ max (vileak—l,i1+7k,il,i)

= Max-Log-MAP

Brj = log E Mi+1jjy - Brt1jy | = log E ek Tkt
i J

= maxx (leewﬂvi’fﬁﬂk“’h) A max (leew*l’f’fl*ﬂk“vil)

= Max-Log-MAP

Turbo coding
I—Algorithms for iterative turbo processing

I—Symbv:)l by symbol detection

Example: Max-Log-MAP approximation

a0(0)=0.0 a1(0)=-0.5 22(0)=-2.8 a3(0)=-6.5

00 =t 91(00)=05 ae e - = 920023 - Qg == g3(00)-66 -~ ~Ip@®
93(02)=-6.0 93(10)=-5.0
a2(0)=-15 a3(0)=-3.4
2(02)=5.0
3(12)=-2.7

01 @ 91(02)=-03)

’
4
i <
\‘/92(21)_ 12 255 7(\ a0(2)-65
g3@en=24 , S
10 . So \.‘\\ 93(31)=-0.8
a1(2)=-0.3 Sa_ ~
g2(23)=-2.3 S

’ So
Ss. a203)=26" 93(23)=-2.5 a3(3)=-3.8
~

1 @ [Al 33312 —\‘.
ag; = log E Ax—1,i - Mii i
i
azo = log (e(a2‘0+73,0,0)+e(042,1,0+73,1,0))

Q

max (e(_2'8_6'0) + e(_1'5_2'7)> = max(—8.8,—6.5) = —6.5

Turbo coding
I—Algoritlnms for iterative turbo processing

I—Soft sequence detection

Soft-output Viterbi algorithm

Two modifications compared to the classical Viterbi algorithm
e Ability to accept extrinsic information from other decoder

- The path metric is modified to account the extrinsic
information. This is similar to the metric calculation in
Max-Log-MAP algorithm.

e Modification for generating soft outputs

Turbo coding

I—Algorithms for iterative turbo processing

I—Soft sequence detection

Turbo coding
I—Algorithms for iterative turbo processing
I—Soft sequence detection

SOVA SOVA
e For each state in the trellis the metric M, ; ; is calculated for Calculation of L (bk] Z)'
both merging paths. - For each bit b}t in the ML path we try to find the path
e The path with the highest metric is selected to be the survivor. merging with ML path that had compared to the b}t in ML
e For the state (at this stage) a pointer to the previous state different bit value by at state k and this path should have
along the surviving path is stored. minimal distance with ML path.
e The following information that is later used for calculating - We go trough d + 1 merging paths that follow stage k i.e. the
L (b|y) is stored: AS i = k...(k+0)
- $:e E!ﬁerence A between th; diic;rded. ad"_d Sl_”Vi‘l’i"g gathl. - For each merging path in that set we calculate back to find
- ''he binary vector containing 0 + 1 bits, indicating last 0 + out which value of the bit by generated this path.
bits that generated the discarded path.)) }) L ..
o After Maximum Likely path is found the update sequences - If the bit [;k-nm this pat,:.':s nOtsbk and Aj' is less than
o current A" we set A" = A
and metric differences are used to calculate L (by|y). .
- - L(b ~ by min A7
(4 X) K i:k...lk—i-p !
D,
Turbo coding Turbo coding

I—Comparison of soft decoding algorithms

Comparison of the soft decoding algorithms

MAP

The MAP algorithm is the optimal component codes decoder
algorithm.

It finds the probability of each bit by of either being +1 or —1
by summing the probabilities of all the codewords where the
given bit is +1 and where the bit is —1.

Complex.

Because of the exponent in probability calculations in practice
the MAP algrithm often suffers numerical stability problems.

I—Comparison of soft decoding algorithms

LogMAP

e LogMAP is theorectically identical to MAP, the calculation
only are made in logarithmic domain.

e Multiplications are replaced by addition and summation with
max *(-) operation.

e Numerical problems that occure in MAP are cirmcumvented.

Turbo coding
I—Comparison of soft decoding algorithms

Max-Log-MAP

e Similar to LogMAP but replaces the maxlog operation
(max*(-)) with taking maximum.

e Because at each state in forward and backward calcualtions
only the path with maximum value is considered the
probabilities are not calculated over all the codewords.

- In recursive calculation of o and 3 only the best transition is
considered.

- The algorithm gives the logarithm of the probability that only
the most likely path reaches the state.

e In the MaxLogMAP L (bk]y) is comparison of probability of
most likely path giving by = —1 to the most likely path giving
bk = +1.

- In calcualtions of loglikelihood ratio only two codewords are
considered (two transitions): The best transition that would
give +1 and the best transition that would give —1.

e MaxLogMAP performs worse than MAP or LogMAP

Turbo coding
I—Comparison of soft decoding algorithms

SOVA
e the SOVA algorithms founds the ML path.

- The recursion used is identical to the one used for calcuating «
in MaxLogMAP algorithm.

e Along the ML path hard decision on the bit by is made.

o [(bk| Z) is the minimum metric difference between the ML
path and the path that merges with ML path and is generated
with different bit value by.

- In L (bk|y) calcualtions accordingly to MaxLogMAP one path
is ML path and other is the most likely path that gives the
different by.

- In SOVA the difference is calculated between the ML and the
most likely path that merges with ML path and gives different
by.

This path but the other may not be the most likely one for
giving different by.

Turbo coding
I—Comparison of soft decoding algorithms

SOVA

e The output of SOVA just more noisy compared to
MaxlogMAP output (SOVA does not have bias).

e The SOVA and MaxLogMAP have the same output

- The magnitude of the soft decisions of SOVA will either be
identical of higher than those of MaxLogMAP.

- If the most likely path that gives the different hard decision for
by has survived and merges with ML path the two algorithms
are identical.

- If that path does not survive the path on what different by is
made is less likely than the path which should have been used.

Turbo coding
I—Complexity of decoding algorithms

Algorithms complexity

Table: Comparison of complexity of different decoding algorithms

| Operations || maxlogMAP logMAP | SOVA |
max-ops 5x2M _2 5x2M 2 [3(M+1)+2M
additions 10x2M 4+ 11 | 10 x2M 4+ 11 2x2M 18
mult. by +1 8 8 8
bit comps 6(M+1)
look-ups 5x2M _2

M is the length of the code memory.

Table accordingly to reference [1]

Turbo coding
I—Comple><ity of decoding algorithms

Algorithms complexity ...

If to assume that each operation is comparable we can calculate
the totat amount of operations per bit every algorithm demands
for decoding one code in one iteration.

Table: Number of reguired operations per bit for different decoding
algorithms

memory (M H MaxLogMAP ‘ LogMAP ‘ Sova ‘

)

2 77 95 55
3 137 175 76
4

5

257 335 | 109
497 655 | 166

Turbo coding
I—Complexity of decoding algorithms

References

1 P. Robertson, E. Villebrun, P. Hoeher, " Comparison of
Optimal and Suboptimal MAP decoding algorithms”, ICC,
1995 page 1009-1013.

