
Turbo coding

Turbo coding

Kalle Ruttik

C om m unica tions L a bora tory

H e lsink i U niv e rsity of Tech nology

A p ril 2 4 , 2 0 0 7

Turbo coding

Historical review

Introduction

Channel coding theorem suggest that a randomly generated code

w ith appropriate distrib ution is likely a good code if its b lock

length is high.

P rob lem: D ecoding

- In case of long b lock lengths the codes w ithout a structure are

diffi cult to decode.

A fully random codes can b e avoided. T he codes w hose spectrum

resemb les spectrum of a random code are good codes.

S uch random like codes can b e generated b y using interleav er.

Interleav er performs permutation of the b it seq uence.

P ermutation can b e either of information b its seq uence or of

the parity b its.

Turbo coding

Historical review

Parallel concated convolutional codes (PCCC)

I n t e r l e a v e r

p

E n c o d e r

1

t o c h a n n e l

E n c o d e r

2

Figure: E ncoder

Turbo coding

Historical review

Decoding turbo codes

• A parallel-concatenated convolutional code cannot be decoded
by a standard serial dynamic programming algorithm.

- The number of states considered in trellis evaluation of two

interleaved code is squared compared to the forward-backward

algorithm on one code.

- Changing a symbol in one part of the turbo-coded codeword

will aff ect possible paths in this part in one code and also the

distant part in other code where this bit is ” interleaved” .

- O ptimal path in one constituent codeword does not have to be

optimal path in the other codeword.

Turbo coding

Historical review

Berrou approach

• Calculate the likelihood of each bit of the original dataword of

being 0 or 1 accordingly to the trellis of the fi rst code.

• The second decoder uses the likelihood from the fi rst decoder

to calculate the new probability of the received bits but now

accordingly to the received sequence of the second coder y
(2) .

• B it estimate from the second decoder is feed again into fi rst

decoder.

• Instead of serially decoding each of the two trellises we decode

both of them in parallel fashion.

Turbo coding

Historical review

Decoding turbo codes

Random like
codes

Inteleaving

Combining several codes

Turbo codes

Pseudo
random
codes

Probability
reassesment

based decoding

Iterative
decoding

Figure: The ideas infl uencing evolution of turbo coding. Accordingly to

fig. 1 from Battail9 7.

Turbo coding

Code as a constraint

Code as a constraint

• The bit estimates calculated based on the coder structure are
aposteriori probabilities of the bit constrained by the code.

• Contraint means that among of all possible bit sequences only
some are allowed - they are possible codewords. The
codewords limit the possible bit sequecnes.

• The aposteriori probability is calculated over the probabilities
of possible codewords.

• The rule of the conditional probability

P (A|B) =
P (A,B)

P (B)

where A correspond to a event that a certain bit in the
codeword is 1 (or zero). B requires that the bit sequence is
allowable codeword.

Turbo coding

Code as a constraint

R ep etition code

Example: repetition code

• We have three samples c1,c2,c3.

• If to take the samples one by one they can be either zero or
one.

• We have additional information: the samples are generated as
a repetition code.

• L et denote the valid configurations as S = {(c1, c2, c3)}.

• The set of possible codewords (the constraint set) is
S = {(0, 0, 0) , (1, 1, 1)}.

Turbo coding

Code as a constraint

Repetition code

• In our case the a posterior probability for the sample c2 = 1 is

p
post
2 =

∑
(c1,c2,c3)∈S
c2= 1

P (c1, c2, c3)

∑
(c1,c2,c3)∈SP (c1, c2, c3)

In the numerator is summation over all configurations in S

such that c2 = 1, in the denominator is the normalization, the
sum of all the probabilities of all configurations in S .

Turbo coding

Code as a constraint

Repetition code

Example: Repetition code

p(c1, c2, c3)

p(0, 0, 0)

p(1, 1, 1)

ppost(c2 = 0) =

∑

c2=0
p(c1,c2,c3)

∑

c2=0
p(c1,c2,c3)+

∑

c2=1
p(c1,c2,c3)

ppost(c2 = 1) =

∑

c2=1
p(c1,c2,c3)

∑

c2=0
p(c1,c2,c3)+

∑

c2=1
p(c1,c2,c3)

In the repetition code is only one possible codeword with c2 = 1
and onw codeword with c2 = 0

Turbo coding

Code as a constraint

Repetition code

• If the prior probabilities are independent the joint probability
can be factorised

P (c1, c2, c3) = P (c1) P (c2)P (c3)

• The values for the prior probabilities could be acquired by
measurements.
For example if we are handling channel outputs them
p(ck) = p(yk |xk)

• A numerical ex cample: We have observed the samples and
concluded that the samples have values 1 with the following
probabilities
P(c1 = 1) = 1

4 ,P(c2 = 1) = 1
2 ,P(c3 = 1) = 1

3 ,
where ci stands for the i -th sample and i = 1, 2, 3 .
What is the probability that the second bit is one?

Turbo coding

Code as a constraint

Repetition code

• The probability of the second sample being one is

p
post
2 =

p1p2p3

p1p2p3 + (1 − p1) (1 − p2) (1 − p3)

• In numerical values

p
post
2 =

1
4 · 1

2 · 1
3

1
4 · 1

3 · 1
3 +

(

1 − 1
4

) (

1 − 1
2

) (

1 − 1
3

) = 0.1429

• The probability of p2(c2 = 0)

p2(c2 = 0) =
(1− 1

4)(1−
1
2)(1−

1
3)

1
4
·
1
2
·
1
3
+(1− 1

4)(1−
1
2)(1−

1
3)

= 0.8 5 71 = 1 − p
post
2

Turbo coding

Code as a constraint

Repetition code

• By using likelihood ratio we can simplify further

p
post
2

(1−p
post
2)

=

∑

(c1,c2,c3)∈S
c2=1

P(c1,c2,c3)

∑

(c1,c2,c3)∈S
c2=1

P(c1,c2,c3)

⇒ p1·p2·p3

(1−p1)·(1−p2)·(1−p3)

= p1

(1−p1)
· p2

(1−p2)
· p3

(1−p3)

• In the logarithmic domain

ln
p (c1 = 1) p (c2 = 1) p (c3 = 1)

p (c1 = 0) p (c2 = 0) p (c3 = 0)

= ln
p (c1 = 1)

p (c1 = 0)
+ ln

p (c2 = 1)

p (c2 = 0)
+ ln

p (c3 = 1)

p (c3 = 0)

Lpost(c3) = L(c1) + L(c2) + L(c3)

Turbo coding

Code as a constraint

Repetition code

• Probability 0.5 indicates that nothing is known about the bit.

L(c2) = 0

• Even if we do not know aything about the bit but we know
probabilties for the other bits we can calculate the aposteriori
probability for the unknown bit.

Lpost(c2) = L(c1) + L(c3)

• The posteriori probability calculation for a bit can be
separated into two parts:

− part describing prior probability
− part impacted by the constraint imposed by the code. This

later part is calculated only based on the probabilities of other
bits.

Turbo coding

P arity-check code

• Assume now that there can be even number of ones among
the three samples S = {(0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1)}

• The first two bits are either 0 or 1 the third bit is calculated
as X O R of first two bits.

• Assume the measured probability for the second bit is 0.5

• The posterior probability of the second sample is

p
post
2 =

p1 (1 − p3) + (1 − p1) p3

p1 · p3 + p1 · (1 − p3) + (1 − p1) · p3 + (1 − p1) · (1 − p3)

• The probability that the second sample is 1 is given by the
probability that exactly one of the other two samples is 1.

• The probability that the second sample is 0 is given by the
probability that both other samples are 0 or both of them are
1.

Turbo coding

Parity-check code

Example: Repetition code

p(c1, c2, c3)

p(0, 0, 0)

p(0, 1, 1)

p(1, 0, 1)

p(1, 1, 0)

ppost(c2 = 0) =

∑

c2=0
p(c1,c2,c3)

∑

c2=0
p(c1,c2,c3)+

∑

c2=1
p(c1,c2,c3)

ppost(c2 = 1) =

∑

c2=1
p(c1,c2,c3)

∑

c2=0
p(c1,c2,c3)+

∑

c2=1
p(c1,c2,c3)

Turbo coding

Parity-check code

• Likelihood ratio for the second sample aposterior probability is

ppost (c2 = 1)

ppost (c2 = 0)
=

p2 (p1 (1 − p3) + (1 − p1) p3)

(1 − p2) (p1p3 + (1 − p1) (1 − p3))

=
1
2

(

1
4

(

1 − 1
3

)

+
(

1 − 1
4

)

1
3

)

(

1 − 1
2

) (

1
4

1
3 +

(

1 − 1
4

) (

1 − 1
3

)) = 0.595

Turbo coding

Parity-check code

Parity check in log domain

• In logarithmic domain can be separated the prior for the bit
and information from the other bits.

log

(

p2(c2 = 1) · p ((c1 ⊕ c3) = 1)

p2(c2 = 0) · p ((c1 ⊕ c3) = 0)

)

=

ln

(

p2(c2 = 1)

p2(c2 = 0)
·
p1(c1 = 1)p3(c3 = 0) + p1(c1 = 0)p3(c3 = 1)

p1(c1 = 0)p3(c3 = 0) + p1(c1 = 1)p3(c3 = 1)

)

=

L2(c2) + ln

(

p1(c1 = 1)p3(c3 = 0) + p1(c1 = 0)p3(c3 = 1)

p1(c1 = 0)p3(c3 = 0) + p1(c1 = 1)p3(c3 = 1)

)

Turbo coding

Parity-check code

Probabilities in log domain

• Here we give the probability calculation folmulas for the
binary code, G F(2).

• The log-likelihood ratio (LLR) of c is

L(c) = ln
p(c = 1)

p(c = 0)
= ln

p(c = 1)

1 − p(c = 1)

p(c = 1) =
eL(c)

1 + eL(c)
=

1

1 + e−L(c)
⇒

p(c = 0) = 1 − p(c = 1) =
1

1 + eL(c)
=

e−L(c)

1 + e−L(c)

Turbo coding

Parity-check code

Incorporating proababilities from different encoders

• Often we have two or more independent ways to calculate the
aposteriori probability of the bit.

• The bit estimates from different sources are similar to
repetition code. All the estiamtes have to have the same bit
value.

• Because all the estiamtes have to be either 0 or 1 in log
domain we can simple sum together the loglikelihood ratios
from different estimations.

Turbo coding

E xample: S ingle Parity Check Code

Single Parity Check Product Code (Example)

• SPC product code - a simple example of a concatenated code
• Two separate coding steps - horizontal, vertical

d p
h

p
v

L
ev

L
eh

Figure: Two dimensional product code

k1 × k2 data array d ; n2 − k2 parity bits ph; n1 − k1 parity bits pv ,
Leh, Lev stand for the extrinsic LLR values learned from the

horizontal and vertical decoding steps.

Turbo coding

Example: Single Parity Check Code

Numerical example

d1 d2 d3 d4 p1h p2h p1v p2v

+1 +1 +1 −1 +1 −1 +1 −1

0.25 2.0 5.0 1.0 1.0 −1.5 2.0 −2.5

d1 d2 p1h

d3 d4 p2h

p1v p2v

⇒

+ + +

+ − −

+ −

⇒

Lc (x1) = 0.25 Lc (x2) = 2.0 Lc (x12) = 1.0
Lc (x3) = 5 .0 Lc (x4) = 1.0 Lc (x34) = −1.5
Lc (x13) = 2.0 Lc (x24) = −2.5

Turbo coding

E x a m p le : S ingle P a rity C h e ck C ode

Decoding Algorithm

1. S e t p rio r in fo rm a tio n p(d̂) = 0 .5 fo r a ll d L(d̂) = 0 .

2 . S u m th e o b se rv ed p ro b a b ility a n d p rio r p ro b a b ility
Lc(d#) + L(d#).

3 . D e c o de h o riz o n ta lly. O b ta in th e b it p ro b a b ilitie s b a sed o n th e
c o n stra in t p o sed b y th e h o riso n ta l c o de . T h e re su lt is c a lled
h o riz o n ta l e x trin sic in fo rm a tio n .

- T h e p a rity b it is g e n e ra ted b y th e x o r o f in fo rm a tio n b its in th e
h o riso n ta l lin e .

- T h e e x trin sic in fo rm a tio n c a n b e g e n e ra ted a s th e a po ste rio ri

p ro b a b ility c a lc u la tio n a c c o rdin g ly to p a rity c h e c k . F o r e x a m p le

Lextr

h (d1) = ln

(

p(d2 = 1)p(p1h = −1) + p(d2 = −1)p(p1h = 1)

p(d2 = −1)p(p1h = −1) + p(d2 = 1)p(p1h = 1)

)

Turbo coding

Example: Single Parity Check Code

4. Set L(d̂1) = Lextr

h
(d1).

5. C ombine the aposteriori horisontal and priori information for
each bit. For example for the bit 1

Lco m b in ed (d1) = Lc (d1) + L(d̂1)

pc(d1 = 1) =
eLco m b in ed (d1)

(

1 + eLco m b in ed (d1)
)

6 . Decode vertically. In computations instead of p use pc .
Obtain the vertical extrinsic information for each bit. For
example

Lextr

v (d1) = ln

(

pc(d3 = 1)p(p1v = −1) + pc(d3 = −1)p(p1v = 1)

pc(d3 = −1)p(p1v = −1) + pc(d3 = 1)p(p1v = 1)

)

Turbo coding

Example: Single Parity Check Code

Decoding example ...

7. If the interations have not fi nished

- combine the information of the aposteriori vertical Lextr

h
(d#)

and priori information L(d#) for each bit.
- go back to stage 2.

else

- Combine all the information for the bit the priori aposteriori

vertical and horisontal.
Ld(d#) = Lc(d#) + Lextr

v (d#) + Lextr

h
(d#)

- Compare the likelihood ratio of the bit w ith the decision level
(0).

Turbo coding

Example: Single Parity Check Code

Decoding example ...

The soft output for the received signal corresponding to data di

L(d̂i) = Lc (xi) + L(d̂i) + Lextr
h (d)

Decode horizontally

Lextr
h (d1) = ln

(

p(d2=1)p(p1h=−1)+ p(d2=−1)p(p1h=1)
p(d2=−1)p(p1h=−1)+ p(d2=1)p(p1h=1)

)

= 0.74 = n ew L(d̂1)

Lextr
h (d2) = +0.12 = n ew L(d̂2)

Lextr
h (d3) = −0.60 = n ew L(d̂3)

Lextr
h (d4) = −1.47 = n ew L(d̂4)

Turbo coding

Example: Single Parity Check Code

+0.2 5 +2 .0

+5 .0 +1.0
+

+0.7 4 +0.12

−0.6 0 −1.4 7
after 1st horizontal decoding

Decode vertically

Lextr
v (d1) = +0.33 = newL(d̂1)

Lextr
v (d2) = +0.09 = newL(d̂2)

Lextr
v (d3) = −0.36 = newL(d̂3)

Lextr
v (d4) = −0.26 = newL(d̂4)

+0.3 3 +0.09

+0.3 6 −0.2 6
E xtrinsic information after 1st vertical decoding

Soft output after 1st iteration L(d̂) = Lc(x) + Leh(d) + Lev (d)
+0.2 5 +2

+5 .0 +1
+

+0.7 4 +0.12

−0.6 0 −1.4 7
+

+0.3 3 +0.09

+0.3 6 −0.2 6
=

+1.3 1 +2 .2 0

+4 .7 5 −0.7 4

Turbo coding

Example: Single Parity Check Code

We can see an iterative process:

1 Decode first code and calculate extrinsic information for each
bit.

- In first iteration the information from other code is zero.

2 Decode the second code by using extrinsic information from
the first decoder.

3 R eturn to the first step by using the extrinsic information from
the second decoder.

Turbo coding

Turbo code

Parallel concated convolutional codes (PCCC)

I n t e r l e a v e r

p

E n c o d e r

1

t o c h a n n e l

E n c o d e r

2

Figure: Encoder

S I S O

1 I n t e r l e a v e r

p

1
p

-

S I S O

2

F r o m d e m o d
n o t u s e d n o t u s e d

F r o m

d e m o d

d e c i s i o n

Figure: Decoder

Turbo coding

Turbo code

Parallel concated convolutional codes (PCCC)

• Encoder contains two or more systematic convolutional
encoders

• The constituent encoders code the same interleaved data
stream

• The systematic bits are transmitted only once

• In reciever the extrinsic information is calculated for the
information bit based on one constituent code and feed to the
decoder of other code

Turbo coding

Turbo code

Serial concated convolutional codes (SCCC)

I n t e r l e a v e r

p

O u t e r

E n c o d e r 1

t o c h a n n e lI n n e r

E n c o d e r 2

Figure: Encoder

S I S O

1 S I S O

2

F r o m d e m o d
n o t u s e d

d e c i s i o n

I n t e r l e a v e r

p

1
p

-

0

Figure: Decoder

Turbo coding

Turbo code

Serial concated convolutional codes (SCCC)

- Code is formed by concatenating two encoders

- The output coded bit stream from the outer encoder is
interleaved and feed to the inner encoder

- The decoder

- The inner decoder calculates the loglikelihoods of information
symbols at the output of the inner decoder and deinterleaver
them

- The outer decode is decoded and loglikelihoods for the coded
bits are calculated

- The coded bits loglikelihoods are interleaved and feed back to
the inner decoder

- The decision are made after the decoding iterations on the
loglikelihoods of the information bits at the output of the outer
decoder

Turbo coding

A lgorithms for iterativ e turbo processing

Algorithms for Iterative (Turbo) Data Processing

Trellis-Based
Detection Algorithms

MAP
Algorithm

log-MAP

max-log-MAP

Viterbi
Algorithm

SOVA

Modified
SOVA

Sequence
detection

Symbol-by-symbol
detection

Requirements

Accept soft-inputs in the form
of a priori probabilities or
log-likelihood ratios
P roduce AP P for output data
Soft-Input Soft-Output

- M AP : M aximum A
P osteriori
(symbol-by-symbol)

- SOV A: Soft Output
V iterbi Algorithm

Turbo coding

Algorithms for iterative turbo processing

Symbol by symbol detection

MAP algorithm

• MAP algorithm operates in probability domain.

• The probability of all codewords passing some particular edge
from initial state i to final state j at stage k is

pA
k (bk,i ,j) = 1

p(Y N
1)

∑

(bk,i,j

Ak−1,i · Mk,i ,j · Bk,j

• When probablity is expressed by loglikelihood value we have to
deal with numbers in very large range. (overfl ows in
computers).

Simplification of MAP: Log-MAP algorithm

• L og-MAP algorithm is a transformation of MAP into
logarithmic domain.

Turbo coding

Algorithms for iterative turbo processing

Symbol by symbol detection

Modification to MAP algorithm

• The MAP algorithm logarithmic domain is expressed with
replaced computations

- Multiplication is converted to addition.
- Addition is converted to max ∗ (·) operation.

max ∗ (x , y) = log (ex + ey) = max (x , y) + log
(

1 + e−|x−y |
)

• The terms for calculating the probabilities in the trellis are
converted

αk,i = log (Ak,i)

βk,j = log (Bk,j)

γk,i ,j = log (Mk,i ,j)

Turbo coding

Algorithms for iterative turbo processing

Symbol by symbol detection

Modification to MAP algorithm

• The complete logMAP algorithm is

L(bk) = log
∑

bk=1

Ak−1,i · Mk,i ,j · Bk,j

− log
∑

bk=0

Ak−1,i · Mk,i ,j · Bk,j

= max ∗
bk=1

(αk−1,i + γk,i ,j + βk,j)

−max ∗
bk=0

(αk−1,i + γk,i ,j + βk,j)

αk,i = log

(

∑

i1

Ak−1,i1 · Mk,i1,i

)

βk,j = log

(

∑

j1

Mk+ 1,j ,j1 · Bk+ 1,j1

)

Turbo coding

A lgorith m s for ite ra tiv e turbo p roce ssing

S y m bol by sy m bol de te ction

Max-Log-MAP decoding Algorithm

• In summation of probabilities in Log-MAP algorithm we are
using max ∗ (·) operation.

• The max ∗ (·) req uires to conv ert LLR v alue into exponential
and after ad d ing 1 to move back into log d omain.

• S implifi cations

- W e can replace log
(

1 + e
−|x−y |

)

by a look up table.
- W e can sk ip the term ⇒ Max-Log-Map.

Turbo coding

Algorithms for iterative turbo processing

Symbol by symbol detection

Max-Log-MAP decoding Algorithm

αk,i = log





∑

i1

Ak−1,i1 · Mk,i1,i



 = log





∑

i1

e
αk−1,i1

+γk,i1,i





= max ∗
(

∀i1e
αk−1,i1

+γk,i1,i
)

≈ max
(

∀i1e
αk−1,i1

+γk,i1,i
)

⇒ Max-Log-MAP

βk,j = log





∑

j1

Mk+1,j ,j1 · Bk+1,j1



 = log





∑

j1

e
γk+1,j,j1

+βk+1,j1





= max ∗
(

∀j1e
γk+1,j,j1

+βk+1,j1

)

≈ max
(

∀j1e
γk+1,j,j1

+βk+1,j1

)

⇒ Max-Log-MAP

Turbo coding

Algorithms for iterative turbo processing

Symbol by symbol detection

Example: Max-Log-MAP approximation

00

01

10

11

a0(0)=0.0 a1(0)=-0.5

a1(2)=-0.3

g1(00)=-0.5

g1(02)=-0.3
g2(02)=-5.0

g2(23)=-2.3

g2(00)=-2.3

g2(21)=-1.2

a2(0)=-2.8

a2(0)=-1.5

a2(2)=-5.5

a2(3)=-2.6

a3(0)=-6.5

a3(0)=-3.4

a3(2)=-6.5

a3(3)=-3.8

g3(00)=-6.6

g3(02)=-6.0

g3(21)=-2.4

g3(23)=-2.5

g3(10)=-5.0

g3(12)=-2.7

g3(33)=-1.2

g3(31)=-0.8

αk,i = log

(

∑

i1

Ak−1,i1 · Mk,i1,i

)

α3,0 = log
(

e
(α2,0+γ3,0,0) + e

(α2,1,0+γ3,1,0)
)

≈ max
(

e
(−2.8−6.0) + e

(−1.5−2.7)
)

= max(−8.8,−6.5) = −6.5

Turbo coding

Algorithms for iterative turbo processing

Soft seq uence detection

Soft-output Viterbi algorithm

Two modifications compared to the classical Viterbi algorithm

• Ability to accept extrinsic information from other decoder

- The path metric is modified to account the extrinsic
information. This is similar to the metric calculation in
Max-Log-MAP algorithm.

• Modification for generating soft outputs

Turbo coding

Algorithms for iterative turbo processing

Soft sequence detection

SOVA

• For each state in the trellis the metric Mk,i ,j is calculated for
both merging paths.

• The path with the highest metric is selected to be the survivor.

• For the state (at this stage) a pointer to the previous state
along the surviving path is stored.

• The following information that is later used for calculating
L
(

bk | y
)

is stored:

- The diff erence ∆ s
k between the discarded and surviving path.

- The binary vector containing δ + 1 bits, indicating last δ + 1
bits that generated the discarded path.

• After Maximum Likely path is found the update sequences
and metric diff erences are used to calculate L

(

bk | y
)

.

Turbo coding

Algorithms for iterative turbo processing

Soft sequence detection

SOVA

Calculation of L
(

bk | y
)

.

- For each bit bM L
k in the ML path we try to find the path

merging with ML path that had compared to the bM L
k in ML

different bit value bk at state k and this path should have
minimal distance with ML path.

- We go trough δ + 1 merging paths that follow stage k i.e. the
∆si

i i = k ...(k + δ)

- For each merging path in that set we calculate back to find
out which value of the bit bk generated this path.

- If the bit bk in this path is not bM L
k and ∆si

i is less than
current ∆m in

k we set ∆m in
k = ∆si

i

- L
(

bk | y
)

≈ bk min
i=k...k+σ
bM L

k
6=bi

k

∆si
i

Turbo coding

C omparison of soft decoding algorithms

Comparison of the soft decoding algorithms

MAP

• The MAP algorithm is the optimal component codes decoder
algorithm.

• It finds the probability of each bit bk of either being +1 or −1
by summing the probabilities of all the codewords where the
given bit is +1 and where the bit is −1.

• Complex.

• B ecause of the exponent in probability calculations in practice
the MAP algrithm often suffers numerical stability problems.

Turbo coding

Comparison of soft decoding algorithms

LogMAP

• LogMAP is theorectically identical to MAP, the calculation
only are made in logarithmic domain.

• Multiplications are replaced by addition and summation with
max ∗(·) operation.

• N umerical problems that occure in MAP are cirmcumvented.

Turbo coding

Comparison of soft decoding algorithms

Max-Log-MAP

• Similar to LogMAP but replaces the maxlog operation
(max ∗(·)) with taking maximum.

• Because at each state in forward and backward calcualtions
only the path with maximum value is considered the
probabilities are not calculated over all the codewords.

- In recursive calculation of α and β only the best transition is
considered.

- The algorithm gives the logarithm of the probability that only
the most likely path reaches the state.

• In the MaxLogMAP L
(

bk | y
)

is comparison of probability of
most likely path giving bk = −1 to the most likely path giving
bk = +1.

- In calcualtions of loglikelihood ratio only two codewords are
considered (two transitions): The best transition that would
give +1 and the best transition that would give −1.

• MaxLogMAP performs worse than MAP or LogMAP

Turbo coding

Comparison of soft decoding algorithms

SOVA

• the SOVA algorithms founds the ML path.

- The recursion used is identical to the one used for calcuating α

in MaxLogMAP algorithm.

• Along the ML path hard decision on the bit bk is made.

• L
(

bk | y
)

is the minimum metric difference between the ML
path and the path that merges with ML path and is generated
with different bit value bk .

- In L
(

bk | y
)

calcualtions accordingly to MaxLogMAP one path
is ML path and other is the most likely path that gives the
different bk .

- In SOVA the difference is calculated between the ML and the
most likely path that merges with ML path and gives different
bk .
This path but the other may not be the most likely one for
giving different bk .

Turbo coding

Comparison of soft decoding algorithms

SOVA

• The output of SOVA just more noisy compared to
MaxlogMAP output (SOVA does not have bias).

• The SOVA and MaxLogMAP have the same output

- The magnitude of the soft decisions of SOVA will either be
identical of higher than those of MaxLogMAP.

- If the most likely path that gives the different hard decision for
bk has survived and merges with ML path the two algorithms
are identical.

- If that path does not survive the path on what different bk is
made is less likely than the path which should have been used.

Turbo coding

Complex ity of decoding algorithms

Algorithms complexity

Table: Comparison of complexity of different decoding algorithms

Operations maxlogMAP logMAP SOVA

max-ops 5 × 2M − 2 5 × 2M − 2 3 (M + 1) + 2M

additions 10 × 2M + 11 10 × 2M + 11 2 × 2M + 8
mult. by ±1 8 8 8
bit comps 6 (M + 1)
look-ups 5 × 2M − 2

M is the length of the code memory.

Table accordingly to reference [1]

Turbo coding

Complexity of decoding algorithms

Algorithms complexity ...

If to assume that each operation is comparable we can calculate
the totat amount of operations per bit every algorithm demands
for decoding one code in one iteration.

Table: Number of reguired operations per bit for different decoding
algorithms

memory (M) MaxLogMAP LogMAP Sova

2 7 7 9 5 55
3 137 17 5 7 6
4 257 335 109
5 49 7 655 166

Turbo coding

Complexity of decoding algorithms

References

1 P. Robertson, E . Villebrun, P. H oeher, ” Comparison of
Optimal and Suboptimal MAP decoding algorithms” , ICC,
1995 page 1009-1013.

