S.72-3320 Advanced Digital Communication (4 cr)

Cyclic Codes

Targets today

- Taxonomy of coding
- How cyclic codes are defined?
- Systematic and nonsystematic codes
- Why cyclic codes are used?
- How their performance is defined?
- How practical encoding and decoding circuits are realized?
- How to construct cyclic codes?

	Er Co Co	ror prrection pding	Error Detection Coding		
Coding	= FEC - no feedback channel - quality paid by redundant bits		 used in ARQ as in TCP/IP feedback channel retransmissions quality paid by delay 		
o Ju	Cryptography (Ciphering)	Source Coding	Error Control Coding	Line Coding	
Taxonor	 Secrecy/ Security Encryption (DES) 	, - Makes bits equal probable	- Strives to utilize channel capacity by	 for baseband communications RX synchronization Spectral shaping for BW requirements error detection 	
		Compression Coding	adding extra bits		
Timo O. Korhonen, HUI	- Re - D - D - N	dundancy removal: Destructive (jpeg, m Ion-destructive (zip	peg))	FEC: Forward Error Correction ARQ: Automatic Repeat Request DES: Data Encryption Standard	

3

Background

- Coding is used for
 - error detection and/or error correction (channel coding)
 - ciphering (security) and compression (source coding)
- In coding extra bits are added or removed in data transmission
- Channel coding can be realized by two approaches
 - FEC (forward error coding)
 - block coding, often realized by cyclic coding
 - convolutional coding
 - ARQ (automatic repeat request)
 - stop-and-wait
 - go-back-N
 - selective repeat ... etc.
 - Note: ARQ applies FEC for error detection

Block and convolutional coding

- Block coding: mapping of source bits of length k into (binary) channel input sequences n (>k) - realized by cyclic codes!
- Binary coding produces 2^k code words of length n. Extra bits in the code words are used for error detection/correction
- (1) block, and (2) convolutional codes:
 - (n,k) block codes: Encoder output of
 n bits depends only on the *k* input bits
 - (n,k,L) convolutional codes:
 - *each source bit* influences n(L+1)
 encoder output bits
 - n(L+1) is the constraint length
 - -L is the memory depth

Essential difference of block and conv. coding n(L+1) output bits is in <u>simplicity</u> of design of encoding and decoding circuits

Why cyclic codes?

• For practical applications rather large *n* and *k* must be used. This is because in order to correct up to *t* errors it should be that

$$\underbrace{2^{n-k}-1}_{\text{syndromes}} \begin{pmatrix} n \\ 1 \\ \vdots \\ \vdots \\ n \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} n \\ t \end{pmatrix} \neq \underbrace{\sum_{i=1}^{t} \begin{pmatrix} n \\ i \end{pmatrix}}_{\text{number of error patters}}$$

number of syndromes \sum_{n} (or check-bit error patterns)

$$\Rightarrow 1 - R_c \approx \frac{1}{n} \log_2 \left[\sum_{i=1}^t \binom{n}{i} \right] \text{ note: } q = n - k = n(1 - R_c)$$

Hence for $R_c = k / n \approx 1$, large *n* and *k* must be used (next slide)

$$\stackrel{k-\text{bits}}{\longrightarrow} \underbrace{(n,k)}_{\text{block coder}} \stackrel{n-\text{bits}}{\longrightarrow}$$

• Cyclic codes are

- linear: sum of any two code words is a code word
- cyclic: any cyclic shift of a code word produces another code word
- Advantages: Encoding, decoding and syndrome computation easy by <u>shift registers</u>

Timo O. Korhonen, HUT Communication Laboratory

Example

 Consider a relatively high SNR channel such that only 1 or 2 bit errors are likely to happen. Consider the ration

$$1 - R_{c} \approx \frac{1}{n} \log_{2} \left[\sum_{i=1}^{t} \binom{n}{i} \right] \qquad \stackrel{k-\text{bits}}{\longrightarrow} \underbrace{(n,k)}_{\text{block coder}} \stackrel{n-\text{bits}}{\longrightarrow} R_{c} = k / n$$
$$\mathcal{E}(n,k) \triangleq \frac{n-k}{\log_{2} \left[\binom{n}{1} + \binom{n}{2} \right]} = \frac{\text{Number of check-bits}}{\text{Number of 2-bit error patterns}}$$

Take a constant code rate of $R_c = k/n = 0.8$ and consider ε with some values of larger *n* and *k*:

$$\varepsilon(10,8) = 0.35, \varepsilon(32,24) = 0.89, \varepsilon(50,40) = 0.97$$

 This demonstrates that long codes are more advantages when a high code rate and high error correction capability is required

Some block codes that can be realized by cyclic codes

- (n,1) Repetition codes. High coding gain (minimum distance always *n*-1), but very low rate: 1/n
- (n,k) Hamming codes. Minimum distance always 3. Thus can detect 2 errors and correct one error. $n=2^m-1$, k = n m, $m \ge 3$
- ◆ Maximum-length codes. For every integer $k \ge 3$ there exists a maximum length code (n,k) with $n = 2^k 1$, $d_{min} = 2^{k-1}$.
- ◆ **BCH-codes**. For every integer $m \ge 3$ there exist a code with $n = 2^m 1$, $k \ge n mt$ and $d_{\min} \ge 2t + 1$ where *t* is the error correction capability
- (n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of m bits that are encoded to yield code words of n symbols. For these codes n = 2^m − 1, number of check symbols n − k = 2t and d_{min} = 2t + 1
- Nowadays BCH and RS are very popular due to <u>large d_{min}, large number</u> of codes, and easy generation

Code selection criteria: number of codes, correlation properties, code gain, code rate, error correction/detection properties

1: Task: find out from literature what is meant by dual codes!

Defining cyclic codes: code polynomial and generator polynomial

An (n,k) linear code X is called a cyclic code when every cyclic shift of a code X, as for instance X', is also a code, e.g.

$$\mathbf{X} = (x_{n-1} x_{n-2} \cdots x_1 x_0) \implies \mathbf{X}' = (x_{n-2} x_{n-3} \cdots x_0 x_{n-1})$$

Each (n,k) cyclic code has the associated code vector with the n-bit code polynomial

$$\mathbf{X}(p) = x_{n-1}p^{n-1} + x_{n-2}p^{n-2} + \dots + x_{n-1}p + x_{n-2}p^{n-2}$$

$$\mathbf{X}'(p) = x_{n-2}p^{n-1} + x_{n-3}p^{n-2} + \dots + x_0p + x_{n-1}$$

- Note that the (n,k) code vector has the polynomial of degree of n-1 or less. Mapping between code vector and code polynomial is one-to-one, e.g. they specify each other uniquely
- Manipulation of the associated polynomial is done in a *Galois field* (for instance GF(2)) having elements {0,1}, where operations are performed mod-2. <u>Thus results are always {0,1}</u> -> binary logic circuits applicable

For each cyclic code, there exists only one <u>generator polynomial</u> whose degree equals the number of check bits q=n-k in the encoded word

Example: Generating of (7,4) cyclic code, by generator polynomial $G(p)=p^3+p+1$

$$\mathbf{M} = (1101) = p^{3} + p^{2} + 1 \quad <- \text{ message}$$

$$\mathbf{G} = (1011) = p^{3} + p + 1 \quad <- \text{ generator}$$

$$\mathbf{X} = \mathbf{MG} = p^{3}(p^{3} + p^{2} + 1) + p(p^{3} + p^{2} + 1) + p^{3} + p^{2} + 1$$

$$= p^{6} + p^{5} + p^{3} + p^{4} + p^{3} + p + p^{3} + p^{2} + 1$$

$$= p^{6} + p^{5} + p^{4} + p^{3} + p^{2} + p + 1 = (1111111) \quad <- \text{ encoded word}$$

The same result obtained by Maple:

> expand($(x^3+x^2+1)*(x^3+x+1)$) mod 2;

$$x^{6} + x^{4} + x^{3} + x^{5} + x^{2} + x + 1$$

Rotation of cyclic code yields another cyclic code

Theorem: A single cyclic shift of X is obtained by multiplication of pX where after division by the factor pⁿ+1 yields a cyclic code at the remainder:

$$\mathbf{X}'(p) = p\mathbf{X}(p) \operatorname{mod}(p^n + 1)$$

and by induction, any cyclic shift i is obtained by

$$\mathbf{X}^{(i)}(p) = p^{(i)}\mathbf{X}(p) \operatorname{mod}(p^{n}+1)$$

Example: $101 \rightarrow \mathbf{X}(p) \rightarrow p^2 + 1$ Shift left by 1 bit: $p\mathbf{X}(p) \rightarrow p^3 + p$ for a three-bit code (1010), divide by the common factor $\frac{p\mathbf{X}(p)}{p^3 + 1} = 1 + \frac{p+1}{p^3 + 1} \rightarrow 011$ *n*-1 bit *rotated* code word

• Important point of implementation is is that the division by p^n+1 can be realized by a tapped shift register. $\frac{\left[\frac{1+(p+1)/(p^3+1)}{(p^3+1)}, \frac{1}{(p^3+1)}\right]}{(p+1)(p^2+p)}$

> expand(%) mod 2;

1

 $p^3+1|\overline{p^3+p}|$

 $p^{3}+1$

 $p+1 \leftarrow$

Prove that

$$\mathbf{X}'(p) = p\mathbf{X}(p) \operatorname{mod}(p^{n} + 1) \tag{1}$$

Note first that

$$\mathbf{X}(p) = x_{n-1}p^{n-1} + x_{n-2}p^{n-2} + \dots + x_1p + x_0$$

$$p\mathbf{X}(p) = x_{n-1}p^n + x_{n-2}p^{n-1} + \dots + x_1p^2 + x_0p$$
(2)

then, by using (1) and (2)

$$p^{n} + 1 \frac{x_{n-1}}{x_{n-1}p^{n} + x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p}$$

$$\frac{x_{n-1}p^{n} + x_{n-1}}{x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p + x_{n-1}} \leftarrow \mathbf{X}'(p)$$

• Repeating the same division with higher degrees of *p* yields then

 $\mathbf{X}^{(i)}(p) = p^{(i)}\mathbf{X}(p) \operatorname{mod}(p^{n}+1)$

Cyclic codes and the common factor pⁿ+1

- Theorem: Cyclic code polynomial X can be generated by multiplying the message polynomial M of degree k-1 by the generator polynomial G of degree q=n-k where G is an q-th order factor of pⁿ + 1.
- Proof: assume message polynomial:

$$\mathbf{M}(p) = m_{k-1}p^{k-1} + m_{k-2}p^{k-2} + \dots + m_{1}p + x_{0}$$

and the *n*-1 degree code is

$$\mathbf{X}(p) = x_{n-1}p^{n-1} + x_{n-2}p^{n-2} + \dots + x_{n-1}p + x_{n-2}p^{n-2}$$

or in terms of G

$$\mathbf{X}(p) = \mathbf{M}\mathbf{G} = \mathbf{G}(p)m_{k-1}p^{k-1} + \mathbf{G}(p)m_{k-2}p^{k-2} + \dots + \mathbf{G}(p)m_{1}p + \mathbf{G}(p)x_{0}$$

Consider then a shifted code version...

$$p\mathbf{X}(p) = x_{n-1}p^{n} + x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p$$

= $x_{n-1}(p^{n}+1) + (x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p + x_{n-1})$
= $x_{n-1}(p^{n}+1) + \mathbf{X}'(p) = p\mathbf{MG}$
G is a factor of $p^{n}+1$
term has the factor $p^{n}+1$ must be a multiple of **G**

Now, if $p\mathbf{X}(p) = p\mathbf{M}\mathbf{G}$ and assume **G** is a factor of p^{n+1} (not **M**), then $\mathbf{X}'(p)$ must be a multiple of **G** that we actually already proved:

 $X'(p) = p\mathbf{MG} \mod(p^n + 1)$

- Therefore, X' can be expressed by M₁G for some other data vector M₁ and X' is must be a code polynomial.
- Continuing this way for p⁽ⁱ⁾X(p), i = 2,3... we can see that X'', X''' etc are all code polynomial generated by the multiplication MG of the respective, different message polynomials
- Therefore, the (n,k) linear code X, generated by MG is indeed cyclic when G is selected to be a factor of pⁿ+1

Cyclic Codes & Common Factor

$$p\mathbf{X}(p) = x_{n-1}p^{n} + x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p$$
$$= x_{n-1}(p^{n}+1) + (x_{n-2}p^{n-1} + \dots + x_{1}p^{2} + x_{0}p + x_{n-1})$$
$$= x_{n-1}(p^{n}+1) + \underbrace{\mathbf{X}'(p)}_{\mathbf{M_{1}G}} = p\mathbf{MG}$$

$$21x + 7y = 4 \cdot 21, \ 3 \cdot 7 = 21 = 1 + p^{2}, \mathbf{M} = 7$$
$$x = 1 \Longrightarrow y = 3 \cdot 3$$
$$x = 2 \Longrightarrow y = 3 \cdot 2$$
$$x = 3 \Longrightarrow y = 3 \cdot 1$$

Factoring cyclic code generator polynomial

Any factor of pⁿ+1 with the degree of q=n-k generates an (n,k) cyclic code

• Example: Consider the polynomial p^7+1 . This can be factored as $p^7+1 = (p+1)(p^3 + p + 1)(p^3 + p^2 + 1)$

Both the factors p³+p+1 or p³+p²+1 can be used to generate an unique cyclic code. For a message polynomial p² +1 the following encoded word is generated:

$$(p^{2}+1)(p^{3}+p+1) = p^{5}+p^{2}+p+1$$

and the respective code vector (of degree n-1 or smaller) is

0100111

Hence, in this example

$$\begin{cases} q = 3 = n - k \\ n = 7 \Longrightarrow k = 4 \end{cases}$$

k-bits
$$(n,k)$$
 n-bits 0101 cyclic encoder 0100111

Example of Calculus of GF(2) in Maple > Factor(x^7+1) mod 2; $(x^{3}+x+1)(x^{3}+x^{2}+1)(1+x)$ > Factor(x^9+1) mod 2; $(x^{6}+x^{3}+1)(x^{2}+x+1)(1+x)$ > expand(%) mod 2; $x^{9} + 1$ $> expand((x^3+x+1)*(x^2+1)) \mod 2;$ $x^{5} + x + x^{2} + 1$ [>

Example: Multiplication of data by a shift register

Examples of cyclic code generator polynomials

• The generator polynomial for an (*n*,*k*) cyclic code is defined by

 $\mathbf{G}(p) = p^{q} + p^{q-1}g_{q-1} \cdots + pg_{1} + 1, q = n - k$

and $\mathbf{G}(p)$ is a factor of $p^{n}+1$, as noted earlier. Any factor of $p^{n}+1$ that has the degree q (the number of check bits) may serve as the generator polynomial. We noticed earlier that a cyclic code is generated by the multiplication $\mathbf{V}(p) = \mathbf{M}(p)\mathbf{C}(p)$

$$\mathbf{X}(p) = \mathbf{M}(p)\mathbf{G}(p)$$

where $\mathbf{M}(p)$ is the *k*-bit message to be encoded

• Only few of the possible generating polynomials yield high quality codes (in terms of their minimum Hamming distance)

$$G(p) = p^{3} + 0 + p + 1$$
Some cyclic codes:
$$\frac{Type \qquad n \qquad k \qquad R_{c} \qquad d_{min} \qquad G(p)}{Hamming \qquad 15 \qquad 11 \qquad 0.73 \qquad 3 \qquad 100 \quad 101 \\ codes \qquad 31 \qquad 26 \qquad 0.84 \qquad 3 \qquad 100 \quad 101 \\ BCH \qquad 31 \qquad 21 \qquad 0.68 \qquad 5 \qquad 111 \quad 010 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 111 \quad 000 \quad 001 \quad 011 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 111 \quad 000 \quad 001 \quad 011 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 111 \quad 000 \quad 001 \quad 011 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 111 \quad 000 \quad 001 \quad 011 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 111 \quad 000 \quad 001 \quad 011 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 011 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 011 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001 \quad 001 \quad 001 \\ codes \qquad 63 \qquad 45 \qquad 0.71 \qquad 7 \qquad 1 \quad 000 \quad 001 \quad 001$$

Systematic cyclic codes

• Define the length q=n-k check vector **C** and the length-*k* message vector **M** by $\mathbf{M}(p) = m_{k-1}p^{k-1} + \dots + m_{1}p + m_{0}$

$$\mathbf{C}(p) = c_{q-1} p^{q-1} + \dots + c_1 p + c_0$$

• Thus the systematic *n*:th degree codeword polynomial is

Note that the check-vector polynomial $\mathbf{C}(p)$ is the remainder left over after dividing $p^{n-k}\mathbf{M}(p)/\mathbf{G}(p) \implies \mathbf{C}(p) = \mathrm{mod}[p^{n-k}\mathbf{M}(p)/\mathbf{G}(p)]$

Example: (7,4) Cyclic code:

$$\mathbf{G}(p) = p^{3} + p^{2} + 1 \qquad p^{n-k} \mathbf{M}(p) / \mathbf{G}(p) = \underbrace{p^{3} + p^{2} + 1}_{\mathbf{Q}(p)} + \underbrace{1}_{\mathbf{C}(p)} \\
 \mathbf{M}(p) = p^{3} + p \qquad p^{n-k} \mathbf{M}(p) + \mathbf{C}(p) = p^{3}(p^{3} + p) + 1 = p^{6} + p^{4} + 1$$

1010 -> 1010<u>001</u>

Division of the generated code by the generator polynomial leaves no reminder

$$\begin{aligned} \mathbf{G}(p) &= p^{3} + p^{2} + 1 \qquad p^{n-k} \mathbf{M}(p) / \mathbf{G}(p) = \underbrace{p^{3} + p^{2} + 1}_{\mathbf{Q}(p)} + \underbrace{1}_{\mathbf{C}(p)} \\ \mathbf{M}(p) &= p^{3} + p \\ p^{7-4} \mathbf{M}(p) &= p^{6} - p^{4} \qquad p^{n-k} \mathbf{M}(p) + \mathbf{C}(p) = p^{3}(p^{3} + p) + 1 = p^{6} + p^{4} + 1 \\ p^{3} + p^{2} + 1 \middle| p^{6} + p^{4} + 1 \\ \underbrace{p^{6} + p^{5} + p^{3}}_{p^{5} + p^{4} + p^{3} + 1} \\ \underbrace{p^{5} + p^{4} + p^{2}}_{p^{3} + p^{2} + 1} \\ \underbrace{p^{3} + p^{2} + 1}_{p^{3} + p^{2} + 1} \\ \underbrace{p^{3} + p^{2} + 1}_{p^{3} + p^{2} + 1} \\ \underbrace{p^{3} + p^{2} + 1}_{p^{3} + p^{2} + 1} \\ \underbrace{p^{3} + p^{2} + 1}_{p^{3} + p^{2} + 1} \\ \end{aligned}$$

Circuit for encoding systematic cyclic codes

- We noticed earlier that cyclic codes can be generated by using shift registers whose feedback coefficients are determined directly by the generating polynomial
- For cyclic codes the generator polynomial is of the form

$$\mathbf{G}(p) = p^{q} + p^{q-1}g_{q-1} + p^{q-2}g_{q-2} + \dots + p^{q-1}g_{1} + 1$$

In the circuit, first the message flows to the shift register, and feedback switch is set to '1', where after check-bit-switch is turned on, and the feedback switch to '0', enabling the check bits to be outputted

Decoding cyclic codes

- Every valid, received code word R(p) must be a multiple of G(p), otherwise an error has occurred. (Assume that the probability of noise to convert code words to other code words is very small.)
- Therefore dividing the R(p)/G(p) and considering the remainder as a syndrome can reveal if an error has happed and sometimes also to reveal in which bit (depending on code strength)
- Division is accomplished by a shift registers
- The error syndrome of q=n-k bits is therefore

 $\mathbf{S}(p) = \mathrm{mod} \big[\mathbf{R}(p) / \mathbf{G}(p) \big]$

This can be expressed also in terms of the error E(p) and the code word X(p) while noting that the received word is in terms of error

$$\mathbf{R}(p) = \mathbf{X}(p) + \mathbf{E}(p)$$
hence

$$\mathbf{S}(p) = \operatorname{mod}\left\{ \left[\mathbf{X}(p) + \mathbf{E}(p) \right] / \mathbf{G}(p) \right\}$$
$$\mathbf{S}(p) = \operatorname{mod}\left[\mathbf{E}(p) / \mathbf{G}(p) \right]$$

Decoding cyclic codes: syndrome table

Construct the decoding table for the single-error correcting (7, 4) code in Table 16.5. Determine the data vectors transmitted for the following received vectors r: (a) 1101101; (b) 0101000; (c) 0001100.

The first step is to construct the decoding table. Because n - k - 1 = 2, the syndrome polynomial is of the second order, and there are seven possible nonzero syndromes. There are also seven possible correctable single-error patterns because n = 7. Using Eq. (16.20), we compute the syndrome for each of the seven correctable error patterns. For example, for e = 1000000, $e(x) = x^6$. Because $g(x) = x^3 + x^2 + 1$

Using denotation of this example:
16.20 $s(x) = mod[e(x)/g(x)]$

	$x^3 + x^2 + 1$	$) x^{6}$		
Table 16.5		$\frac{x^{6} + x^{5} + x^{3}}{x^{5} + x^{3}}$	e	S
d	с	$x^{5} + x^{5}$ $x^{5} + x^{4} + x^{2}$	100000	110
1111	1111111		100000	110
1110	1110010	$x^4 + x^3 + x^2$	0100000	011
1101	1101000	4 . 3 .	0010000	111
1100	1100101	$x^{-} + x^{-} + x$	0001000	101
1011	1011100	2	0001000	101
1010	1010001	$x^2 + x \leftarrow s(x)$	0000100	100
1001	1001011		0000010	010
1000	1000110		0000010	010
0111	0111001		0000001	001
		c — 110	1	

 $x^3 + x^2 + x$

	Decoding cyclic codes: error correction	Table 16.6	
		е	S
W	When the received word r is 1101101 , $r(x) = x^{6} + x^{5} + x^{3} + x^{2} + 1$ e now compute $s(x) = \text{mod}[r(x)/g(x)]$ r^{3}	1000000 0100000 0010000 0001000 0000100 0000010 000000	110 011 111 101 100 010 001
	$ \begin{array}{r} x^{3} + x^{2} + 1 \overline{\big)} x^{6} + x^{5} + x^{3} + x^{2} + 1 \\ x^{6} + x^{5} + x^{3} \end{array} $	Table 16.5	
	$g(x) x^2 + 1$	d	с
He	ence, $s = 101$. From Table 16.6, this gives $e = 0001000$, and $c = r \oplus e = 1101101 \oplus 0001000 = 1100101$	1111 1110 1101 1100 1011	1111111 1110010 1101000 1100101 1011100
Hence, from Table 16.5 we have $d = 1100$		1010 1001 1000 0111	1010001 1001011 1000110 0111001

In a similar way, we determine for r = 0101000, s = 110 and e = 1000000; hence $c = r \oplus e = 1101000$, and d = 1101. For r = 0001100, s = 001 and e = 0000001; hence $c = r \oplus e = 0001101$, and d = 0001.

- To start with, the switch is at "0" position
- Then shift register is stepped until all the received code bits have entered the register
- This results is a 3-bit syndrome (n k = 3):

$$\mathbf{S}(p) = \mathrm{mod} \big[\mathbf{R}(p) / \mathbf{G}(p) \big]$$

that is then left to the register

- Then the switch is turned to the position "1" that drives the syndrome out of the register
- Note the tap order for Galois-form shift register

Lessons learned

- You can construct cyclic codes starting from a given factored pⁿ+1 polynomial by doing simple calculations in GF(2)
- You can estimate strength of designed codes
- You understand how to apply shift registers with cyclic codes
- You can design encoder circuits for your cyclic codes
- You understand how syndrome decoding works with cyclic codes and you can construct the respect decoder circuit