S.72-3320 Advanced Digital Communication (4 cr)

Cyclic Codes

Targets today

- Taxonomy of coding
- How cyclic codes are defined?
- Systematic and nonsystematic codes
- Why cyclic codes are used?
- How their performance is defined?
- How practical encoding and decoding circuits are realized?
- How to construct cyclic codes?

Background

- Coding is used for
- error detection and/or error correction (channel coding)
- ciphering (security) and compression (source coding)
- In coding extra bits are added or removed in data transmission
- Channel coding can be realized by two approaches
- FEC (forward error coding)
- block coding, often realized by cyclic coding
- convolutional coding
- ARQ (automatic repeat request)
- stop-and-wait
- go-back-N
- selective repeat ... etc.

Note: ARQ applies FEC for error detection

Block and convolutional coding

- Block coding: mapping of source bits of length k into (binary) channel input sequences $n(>k)$ - realized by cyclic codes!
- Binary coding produces 2^{k} code words of length n. Extra bits in the code words are used for error detection/correction
- (1) block, and (2) convolutional codes:
- (n,k) block codes: Encoder output of n bits depends only on the k input bits
- (n,k,L) convolutional codes:
- each source bit influences $n(L+1)$ encoder output bits
- $n(L+1)$ is the constraint length
- L is the memory depth

Essential difference of block and conv. coding

input bit

$n(L+1)$ output bits is in simplicity of design of encoding and decoding circuits

Why cyclic codes?

- For practical applications rather large n and k must be used. This is because in order to correct up to t errors it should be that

number of error patters in encoded word

$$
\Rightarrow 1-R_{c} \approx \frac{1}{n} \log _{2}\left[\sum_{i=1}^{t}\binom{n}{i}\right] \text { note: } q=n-k=n\left(1-R_{c}\right)
$$

- Hence for $R_{c}=k / n \approx 1$, large n and k must be used (next slide)

- Cyclic codes are
- linear: sum of any two code words is a code word
- cyclic: any cyclic shift of a code word produces another code word

Advantages: Encoding, decoding and syndrome computation easy by shift registers

Example

- Consider a relatively high SNR channel such that only 1 or 2 bit errors are likely to happen. Consider the ration

$$
\begin{aligned}
& 1-R_{c} \approx \frac{1}{n} \log _{2}\left[\sum_{i=1}^{t}\binom{n}{i}\right] \\
& \varepsilon(n, k) \triangleq \frac{n-k}{\log _{2}\left[\binom{n}{1}+\binom{n}{2}\right]}=\stackrel{(n, k)}{\xrightarrow[\text { block coder }]{(\stackrel{n}{\longrightarrow}} \stackrel{n \text {-bits }}{R_{c}}=k / n}
\end{aligned}
$$

- Take a constant code rate of $R_{c}=k / n=0.8$ and consider ε with some values of larger n and k :

$$
\varepsilon(10,8)=0.35, \varepsilon(32,24)=0.89, \varepsilon(50,40)=0.97
$$

This demonstrates that long codes are more advantages when a high code rate and high error correction capability is required

Some block codes that can be realized by cyclic codes

- $(\mathrm{n}, 1)$ Repetition codes. High coding gain (minimum distance always n 1), but very low rate: $1 / n$
- (n,k) Hamming codes. Minimum distance always 3. Thus can detect 2 errors and correct one error. $n=2^{m}-1, k=n-m, m \geq 3$
- Maximum-length codes. For every integer $k \geq 3$ there exists a maximum length code (n, k) with $n=2^{k}-1, d_{\text {min }}=2^{k-1}$.
- BCH-codes. For every integer $m \geq 3$ there exist a code with $n=2^{m}-1$, $k \geq n-m t$ and $d_{\min } \geq 2 t+1$ where t is the error correction capability
- (n, k) Reed-Solomon (RS) codes. Works with k symbols that consists of m bits that are encoded to yield code words of n symbols. For these codes $n=2^{m}-1$, number of check symbols $n-k=2 t$ and $d_{\text {min }}=2 t+1$
- Nowadays BCH and RS are very popular due to large $d_{\text {min }}$ large number of codes, and easy generation
- Code selection criteria: number of codes, correlation properties, code gain, code rate, error correction/detection properties

Defining cyclic codes: code polynomial and generator polynomial

- An (n, k) linear code \mathbf{X} is called a cyclic code when every cyclic shift of a code \mathbf{X}, as for instance \mathbf{X}^{\prime}, is also a code, e.g.

$$
\mathbf{X}=\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0}\right) \Rightarrow \mathbf{X}^{\prime}=\left(x_{n-2} x_{n-3} \cdots x_{0} x_{n-1}\right)
$$

- Each (n, k) cyclic code has the associated code vector with the n-bit code polynomial

$$
\begin{aligned}
\mathbf{X}(p) & =x_{n-1} p^{n-1}+x_{n-2} p^{n-2}+\cdots+x_{1} p+x_{0} \\
\mathbf{X}^{\prime}(p) & =x_{n-2} p^{n-1}+x_{n-3} p^{n-2}+\cdots+x_{0} p+x_{n-1}
\end{aligned}
$$

- Note that the (n, k) code vector has the polynomial of degree of $n-1$ or less. Mapping between code vector and code polynomial is one-to-one, e.g. they specify each other uniquely
- Manipulation of the associated polynomial is done in a Galois field (for instance GF(2)) having elements $\{0,1\}$, where operations are performed mod- 2 . Thus results are always $\{0,1\}$-> binary logic circuits applicable
- For each cyclic code, there exists only one generator polynomial whose degree equals the number of check bits $q=n-k$ in the encoded word

Example: Generating of $(7,4)$ cyclic code, by generator polynomial $\mathrm{G}(p)=p^{3}+p+1$

$$
\begin{aligned}
& \mathbf{M}=(1101)=p^{3}+p^{2}+1<- \text { message } \\
& \mathbf{G}=(1011)=p^{3}+p+1<- \text { generator } \\
& \mathbf{X}=\mathbf{M G}=p^{3}\left(p^{3}+p^{2}+1\right)+p\left(p^{3}+p^{2}+1\right)+p^{3}+p^{2}+1 \\
& =p^{6}+p^{5}+\not p^{3}+p^{4}+\not p^{3}+p+p^{3}+p^{2}+1 \\
& =p^{6}+p^{5}+p^{4}+p^{3}+p^{2}+p+1=(1111111) \quad \text { <- encoded word }
\end{aligned}
$$

The same result obtained by Maple:

```
\(\gg \operatorname{expand}\left(\left(x^{\wedge} 3+x^{\wedge} 2+1\right) *\left(x^{\wedge} 3+x+1\right)\right) \bmod 2 ;\)
\[
x^{6}+x^{4}+x^{3}+x^{5}+x^{2}+x+1
\]
```


Rotation of cyclic code yields another cyclic code

- Theorem: A single cyclic shift of \mathbf{X} is obtained by multiplication of $p \mathbf{X}$ where after division by the factor $p^{\mathrm{n}}+1$ yields a cyclic code at the remainder:

$$
\mathbf{X}^{\prime}(p)=p \mathbf{X}(p) \bmod \left(p^{n}+1\right)
$$

and by induction, any cyclic shift i is obtained by

$$
\mathbf{X}^{(i)}(p)=p^{(i)} \mathbf{X}(p) \bmod \left(p^{n}+1\right)
$$

Example:

$$
\begin{array}{r}
p^{3}+1 \frac{1}{p^{3}+p} \\
\frac{p^{3}+1}{p+1} \leftarrow
\end{array}
$$

$$
101 \rightarrow \mathbf{X}(p) \rightarrow p^{2}+1
$$

Shift left by 1 bit:

$$
\begin{gathered}
p \mathbf{X}(p) \rightarrow p^{3}+p \quad \longleftarrow \quad \text { not a three-bit code (1010), } \\
\frac{p \mathbf{X}(p)}{p^{3}+1}=1+\frac{p+1}{p^{3}+1} \rightarrow 011 n-1 \text { bit } \text { rotated code word }
\end{gathered}
$$

- Important point of implementation is is that the division by p^{n+1} can be realized by a tapped shift register.

Prove that

$$
\begin{equation*}
\mathbf{X}^{\prime}(p)=p \mathbf{X}(p) \bmod \left(p^{n}+1\right) \tag{1}
\end{equation*}
$$

Note first that

$$
\begin{align*}
\mathbf{X}(p) & =x_{n-1} p^{n-1}+x_{n-2} p^{n-2}+\cdots+x_{1} p+x_{0} \\
p \mathbf{X}(p) & =x_{n-1} p^{n}+x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p \tag{2}
\end{align*}
$$

then, by using (1) and (2)

$$
\begin{aligned}
& p^{n}+1 \frac{x_{n-1}}{x_{n-1} p^{n}+x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p} \\
& \frac{x_{n-1} p^{n}+x_{n-1}}{x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p+x_{n-1}} \leftarrow \mathbf{X}^{\prime}(p)
\end{aligned}
$$

Repeating the same division with higher degrees of p yields then

$$
\mathbf{X}^{(i)}(p)=p^{(i)} \mathbf{X}(p) \bmod \left(p^{n}+1\right)
$$

Cyclic codes and the common factor $\mathrm{p}^{\mathrm{n}+1}$

- Theorem: Cyclic code polynomial \mathbf{X} can be generated by multiplying the message polynomial \mathbf{M} of degree $k-1$ by the generator polynomial \mathbf{G} of degree $q=n$ - k where \mathbf{G} is an q-th order factor of p^{n+1}.
- Proof: assume message polynomial:

$$
\mathbf{M}(p)=m_{k-1} p^{k-1}+m_{k-2} p^{k-2}+\cdots+m_{1} p+x_{0}
$$

and the $n-1$ degree code is

$$
\mathbf{X}(p)=x_{n-1} p^{n-1}+x_{n-2} p^{n-2}+\cdots+x_{1} p+x_{0}
$$

or in terms of \mathbf{G}
$\mathbf{X}(p)=\mathbf{M G}=\mathbf{G}(p) m_{k-1} p^{k-1}+\mathbf{G}(p) m_{k-2} p^{k-2}+\cdots+\mathbf{G}(p) m_{1} p+\mathbf{G}(p) x_{0}$
Consider then a shifted code version...

$$
\begin{aligned}
& \quad p \mathbf{X}(p)=x_{n-1} p^{n}+x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p \\
& =x_{n-1}\left(p^{n}+1\right)+\left(x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p+x_{n-1}\right) \\
& =x_{n-1}\left(p^{n}+1\right)+\mathbf{X}^{\prime}(p)=p \mathbf{M G} \mathbf{G} \text { is a factor of } p^{n+1} \\
& \text { term has the factor } p^{n+1} \text { must be a multiple of } \mathbf{G}
\end{aligned}
$$

- Now, if $p \mathbf{X}(p)=p \mathbf{M G}$ and assume \mathbf{G} is a factor of $p^{\mathrm{n}}+1$ (not \mathbf{M}), then $\mathbf{X}^{\prime}(p)$ must be a multiple of \mathbf{G} that we actually already proved:

$$
X^{\prime}(p)=p \mathbf{M G} \bmod \left(p^{n}+1\right)
$$

- Therefore, X' can be expressed by $\mathbf{M}_{1} \mathbf{G}$ for some other data vector \mathbf{M}_{1} and \mathbf{X}^{\prime} is must be a code polynomial.
- Continuing this way for $p^{(i)} \mathbf{X}(p), \mathrm{i}=2,3 \ldots$ we can see that $\mathbf{X}^{\prime \prime}, \mathbf{X}^{\prime \prime \prime}$ etc are all code polynomial generated by the multiplication MG of the respective, different message polynomials
- Therefore, the (n, k) linear code \mathbf{X}, generated by MG is indeed cyclic when \mathbf{G} is selected to be a factor of $p^{\mathrm{n}+1}$

Cyclic Codes \& Common Factor

$$
\begin{aligned}
& p \mathbf{X}(p)=x_{n-1} p^{n}+x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p \\
& =x_{n-1}\left(p^{n}+1\right)+\left(x_{n-2} p^{n-1}+\cdots+x_{1} p^{2}+x_{0} p+x_{n-1}\right) \\
& =x_{n-1}\left(p^{n}+1\right)+\underbrace{\mathbf{X}^{\prime}(p)}_{\mathbf{M}_{1} \mathbf{G}})=p \mathbf{M G} \\
& 21 x+7 y=4 \cdot 21,3 \cdot 7=21=1+p^{2}, \mathbf{M}=7 \\
& x=1 \Rightarrow y=3 \cdot 3 \\
& x=2 \Rightarrow y=3 \cdot 2 \\
& x=3 \Rightarrow y=3 \cdot 1
\end{aligned}
$$

Factoring cyclic code generator polynomial

- Any factor of $\boldsymbol{p}^{n}+1$ with the degree of $\boldsymbol{q}=n-k$ generates an (n, k) cyclic code
- Example: Consider the polynomial p^{7+1}. This can be factored as

$$
2+1=(p+1)\left(p^{3}+p+1\right)\left(p^{3}+p^{2}+1\right)
$$

- Both the factors $p^{3}+p+1$ or $p^{3,+}+p^{2}+1$ can be used to generate an unique cyclic code. For a message polynomial $p^{2}+1$ the following encoded word is generated:

$$
\left(p^{2}+1\right)\left(p^{3}+p+1\right)=p^{5}+p^{2}+p+1
$$

and the respedtive code vector (of degree $n-1$ or smaller) is
0100111

- Hence, in this exanple

$$
\left\{\begin{array}{l}
q=3=n-k \\
n=7 \Rightarrow k=4
\end{array}\right.
$$

Example of Calculus of GF(2) in Maple

```
[> Factor ( }\mp@subsup{x}{}{\wedge}7+1)\operatorname{mod}2
(\mp@subsup{x}{}{3}+x+1)(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+1)(1+x)
(\mp@subsup{x}{}{6}+\mp@subsup{x}{}{3}+1)(\mp@subsup{x}{}{2}+x+1)(1+x)
\[
x^{9}+1
\]
\[
x^{5}+x+x^{2}+1
\]
```


Encoder applies shift registers for multiplication of data by the generator polynomial

Figure shows a shift register to realize multiplication by $p^{3}+p+1$

- In practice, multiplication can be realized by two equivalent topologies:

Example: Multiplication of data by a shift register

1	1	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	1
0	0	0	0	1	1	0	0	0	0	1
0	0	0	0	0	1	1	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	0	0	1	1	0

$$
\begin{aligned}
& (p+1)\left(p^{3}+p+1\right) \\
& =p^{4}+p^{2}+k+p^{3}+k+1
\end{aligned}
$$

$$
=p^{4}+p^{3}+p^{2}+1 \rightarrow 11101 \sim \quad \text { Encoded word }
$$

$$
\mathbf{X}(p)=x_{n-1} p^{n-1}+x_{n-2} p^{n-2}+\cdots+x_{1} p+x_{0}
$$

Calculating the remainder (word rotation) by a shift register

Adding the dashed-line (teedback) enables division by $p^{n}+1$

Word to be rotated (divided by the common factor)

$$
\begin{aligned}
101 \rightarrow \mathbf{X}(p) & =p^{2}+1 \\
p \mathbf{X}(p) & =p^{3}+p
\end{aligned}
$$

Determines tap connections

$$
\xrightarrow{\frac{p \mathbf{X}(p)}{p^{3}+1}=1+\frac{p+1}{p^{3}+1} \rightarrow 011} \text { Remainder }
$$

			X	A	B	C	D
0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1
0	0	1	0	1	1	0	1
0	0	0	1	0	1	1	1
0	0	0	0	1	0	1	0
0	0	0	β	0	1	0	1

Remainder is left to the shift register

Alternate way to realize rotation

Examples of cyclic code generator polynomials

- The generator polynomial for an (n, k) cyclic code is defined by

$$
\mathbf{G}(p)=p^{q}+p^{q-1} g_{q-1} \cdots+p g_{1}+1, q=n-k
$$

and $\mathbf{G}(p)$ is a factor of $p^{n}+1$, as noted earlier. Any factor of $p^{n}+1$ that has the degree q (the number of check bits) may serve as the generator polynomial. We noticed earlier that a cyclic code is generated by the multiplication

$$
\mathbf{X}(p)=\mathbf{M}(p) \mathbf{G}(p)
$$

where $\mathbf{M}(p)$ is the k-bit message to be encoded

- Only few of the possible generating polynomials yield high quality codes (in terms of their minimum Hamming distance)

Systematic cyclic codes

- Define the length $q=n-k$ check vector \mathbf{C} and the length- k message vector \mathbf{M} by

$$
\begin{aligned}
& \mathbf{M}(p)=m_{k-1} p^{k-1}+\cdots+m_{1} p+m_{0} \\
& \mathbf{C}(p)=c_{q-1} p^{q-1}+\cdots+c_{1} p+c_{0}
\end{aligned}
$$

- Thus the systematic n :th degree codeword polynomial is

Question: Why these denote the message bits still the message bits are $\mathbf{M}(p)$???

Determining check-bits

$$
\begin{aligned}
& \mathbf{X}(p)=\mathbf{M}(p) \mathbf{G}(p)=p^{q} \mathbf{M}(p)+\mathbf{C}(p) \\
& \Rightarrow \frac{p^{n-k} \mathbf{M}(p)}{\mathbf{G}(p)}=\mathbf{M}(p)+\frac{\mathbf{C}(p)}{\mathbf{G}(p)}
\end{aligned}
$$

$$
\frac{7}{5}=1+\frac{7-5 \cdot 1}{5}
$$

Definition of systematic cyclic code

- Note that the check-vector polynomial $\mathbf{C}(p)$ is the remainder left over after dividing $p^{n-k} \mathbf{M}(p) / \mathbf{G}(p) \quad \stackrel{\Gamma}{\Rightarrow} \overline{\mathbf{C}}(\underline{p})=\overline{\bmod }\left[\bar{p}^{n-k} \overline{\mathbf{M}} \overline{(p)} \overline{\mathbf{G}} \overline{\mathbf{G}}(\bar{p})\right]$

Example: $(7,4)$ Cyclic code:

$$
\begin{array}{ll}
\mathbf{G}(p)=p^{3}+p^{2}+1 & p^{n-k} \mathbf{M}(p) / \mathbf{G}(p)=\underbrace{p^{3}+p^{2}+1}_{\mathbf{Q}(p)}+{\underset{\mathbf{C}(p)}{1}}_{\mathbf{M}(p)=p^{3}+p} \\
p^{7-4} \mathbf{M}(p)=p^{6}-p^{4} & p^{n-k} \mathbf{M}(p)+\mathbf{C}(p)=p^{3}\left(p^{3}+p\right)+1=p^{6}+p^{4}+1
\end{array}
$$

1010 -> $1010 \underline{001}$

Division of the generated code by the generator polynomial leaves no reminder

$$
\begin{array}{ll}
\mathbf{G}(p)=p^{3}+p^{2}+1 & p^{n-1} \mathbf{M}(p) / \mathbf{G}(p)=\underbrace{p^{3}+p^{2}+1}_{\mathbf{Q}(p)}+\underset{\mathbf{c}(p)}{1} \\
\mathbf{M}(p)=p^{3}+p
\end{array}
$$

$$
p^{2-4} \mathbf{M}(p)=p^{6}-p^{4} \quad p^{n-1} \mathbf{M}(p)+\mathbf{C}(p)=p^{3}\left(p^{3}+p\right)+1=p^{6}+p^{4}+1
$$

$$
\begin{gathered}
\frac{p^{3}+p^{2}+1}{p^{3}+p^{2}+1 \mid p^{6}+p^{4}+1} \\
\frac{p^{6}+p^{5}+p^{3}}{p^{5}+p^{4}+p^{3}+1} \\
\frac{p^{5}+p^{4}+p^{2}}{p^{3}+p^{2}+1} \\
p^{p^{3}+p^{2}+1}
\end{gathered}
$$

This can be used for error detection/correction as we inspect later

Circuit for encoding systematic cyclic codes

- We noticed earlier that cyclic codes can be generated by using shift registers whose feedback coefficients are determined directly by the generating polynomial
- For cyclic codes the generator polynomial is of the form

$$
\mathbf{G}(p)=p^{q}+p^{q-1} g_{q-1}+p^{q-2} g_{q-2}+\cdots+p g_{1}+1
$$

- In the circuit, first the message flows to the shift register, and feedback switch is set to ' 1 ', where after check-bit-switch is turned on, and the feedback switch to ' 0 ', enabling the check bits to be outputted

Decoding cyclic codes

- Every valid, received code word $\mathbf{R}(p)$ must be a multiple of $\mathbf{G}(p)$, otherwise an error has occurred. (Assume that the probability of noise to convert code words to other code words is very small.)
- Therefore dividing the $\mathbf{R}(p) / \mathbf{G}(p)$ and considering the remainder as a syndrome can reveal if an error has happed and sometimes also to reveal in which bit (depending on code strength)
- Division is accomplished by a shift registers
- The error syndrome of $q=n-k$ bits is therefore

$$
\mathbf{S}(p)=\bmod [\mathbf{R}(p) / \mathbf{G}(p)]
$$

- This can be expressed also in terms of the error $\mathbf{E}(p)$ and the code word $\mathbf{X}(p)$ while noting that the received word is in terms of error

$$
\begin{gathered}
\mathbf{R}(p)=\underset{\text { hence }}{\mathbf{X}(p)+\mathbf{E}(p)} \\
\mathbf{S}(p)=\bmod \{[\mathbf{X}(p)+\mathbf{E}(p)] / \mathbf{G}(p)\} \\
\mathbf{S}(p)=\bmod [\mathbf{E}(p) / \mathbf{G}(p)]
\end{gathered}
$$

Decoding cyclic codes: syndrome table

Construct the decoding table for the single-error correcting $(7,4)$ code in Table 16.5. Determine the data vectors transmitted for the following received vectors r : (a) 1101101; (b) 0101000; (c) 0001100 .

號
The first step is to construct the decoding table. Because $n-k-1=2$, the syndrome polynomial is of the second order, and there are seven possible nonzero syndromes. There are also seven possible correctable single-error patterns because $n=7$. Using Eq. (16.20), we compute the syndrome for each of the seven correctable error patterns. For example, for $\boldsymbol{e}=1000000, e(x)=x^{6}$. Because $g(x)=x^{3}+x^{2}+1$

$$
\begin{aligned}
& x^{3}+x^{2}+1 \frac{x^{3}+x^{2}+x}{x^{6}} \\
& x^{6}+x^{5}+x^{3}
\end{aligned}
$$

$$
\frac{x^{6}+x^{5}+x^{3}}{x^{5}+x^{3}}
$$

$$
\begin{aligned}
& 1010001 \\
& 1001011
\end{aligned}
$$

$$
\frac{x^{5}+x^{4}+x^{2}}{x^{4}+x^{3}+x^{2}} \begin{array}{r}
x^{4}+x^{3}+x \\
x^{2}+x
\end{array} s(x)
$$

$$
1000110
$$

$$
0111001
$$

Using denotation of this example:

$$
16.20 s(x)=\bmod [e(x) / g(x)]
$$

e	s
1000000	110
0100000	011
0010000	111
0001000	101
0000100	100
0000010	010
0000001	001

Decoding cyclic codes: error correction

Table 16.6

When the received word r is $\mathbf{1 1 0 1 1 0 1}$,

$$
r(x)=x^{6}+x^{5}+x^{3}+x^{2}+1
$$

We now compute $s(x)=\bmod [r(x) / g(x)]$

Hence, $\boldsymbol{s}=\mathbf{1 0 1}$. From Table 16.6, this gives $\boldsymbol{e}=\mathbf{0 0 0 1 0 0 0}$, and

$$
c=r \oplus e=1101101 \oplus 0001000=\mathbf{1 1 0 0 1 0 1}
$$

Table 16.5

$$
d=1100
$$

d	c
1111	1111111
1110	1110010
1101	1101000
1100	1100101
1011	1011100
1010	1010001
1001	1001011
1000	1000110
0111	0111001

In a similar way, we determine for $r=0101000, s=110$ and $e=1000000$; hence $c=r \oplus e=1101000$, and $d=1101$. For $r=0001100, s=001$ and $e=0000001$; hence $\boldsymbol{c}=r \oplus e=0001101$, and $d=0001$.

Decoding circuit for $(7,4)$ code syndrome computation

received code

- To start with, the switch is at " 0 " position
- Then shift register is stepped until all the received code bits have entered the register
- This results is a 3-bit syndrome $(n-k=3)$:

$$
\mathbf{S}(p)=\bmod [\mathbf{R}(p) / \mathbf{G}(p)]
$$

that is then left to the register

* Then the switch is turned to the position " 1 " that drives the syndrome out of the register
Note the tap order for Galois-form shift register

Lessons learned

- You can construct cyclic codes starting from a given factored $p^{n}+1$ polynomial by doing simple calculations in GF(2)
- You can estimate strength of designed codes
- You understand how to apply shift registers with cyclic codes
- You can design encoder circuits for your cyclic codes
- You understand how syndrome decoding works with cyclic codes and you can construct the respect decoder circuit

