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Targets today

Taxonomy of coding
How cyclic codes are defined?
Systematic and nonsystematic codes
Why cyclic codes are used?
How their performance is defined?
How practical encoding and decoding circuits are realized?
How to construct cyclic codes?
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Cryptography
(Ciphering)

Source
Coding

Compression
Coding

Line CodingError Control 
Coding

Error 
Correction
Coding

Error 
Detection
Coding

- Secrecy/ Security
- Encryption (DES)

- Redundancy removal:
   - Destructive (jpeg, mpeg)
   - Non-destructive (zip)

- Makes bits
equal 
probable

- Strives to
utilize
channel
capacity by
adding 
extra bits

- for baseband 
  communications
- RX synchronization
- Spectral shaping
  for BW requirements
- error detection

- used
  in ARQ
  as in TCP/IP
- feedback channel
- retransmissions
- quality paid by delay

= FEC
- no feedback
  channel
- quality paid
by redundant
bits
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FEC: Forward Error Correction
ARQ: Automatic Repeat Request
DES: Data Encryption Standard
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Background
Coding is used for 
– error detection and/or error correction (channel coding)
– ciphering (security) and compression (source coding)

In coding extra bits are added or removed in data transmission
Channel coding can be realized by two approaches
– FEC (forward error coding)

block coding, often realized by cyclic coding
convolutional coding

– ARQ (automatic repeat request)
stop-and-wait
go-back-N
selective repeat … etc.

Note: ARQ applies FEC for error detection
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Block and
convolutional coding 

Block coding: mapping of source bits of length k into (binary) channel 
input sequences n (>k) - realized by cyclic codes!
Binary coding produces 2k code words of length n. Extra bits in the code 
words are used for error detection/correction
(1) block, and (2) convolutional codes:
– (n,k) block codes: Encoder output of 

n bits depends only on the k input bits 
– (n,k,L) convolutional codes: 

each source bit influences n(L+1)
encoder output bits 

– n(L+1) is the constraint length 
– L is the memory depth

Essential difference of block and conv. coding 
is in simplicity of design of encoding and decoding circuits

(n,k) 
encoder
(n,k) 

encoder
k bits n bits

k input bits

n output bits

n(L+1) output bits

input bit
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Why cyclic codes?

For practical applications rather large n and k must be used. This is 
because in order to correct up to t errors it should be that

Hence for                       , large n and k
must be used (next slide)
Cyclic codes are 
– linear: sum of any two code words is a code word
– cyclic: any cyclic shift of a code word produces another code word

Advantages: Encoding, decoding and syndrome computation easy by 
shift registers
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Example

Consider a relatively high SNR channel such that only 1 or 2 bit errors 
are likely to happen. Consider the ration

Take a constant code rate of Rc=k/n=0.8 and consider ε with some 
values of larger n and k : 

This demonstrates that long codes are more advantages when a high 
code rate and high error correction capability is required 

(10,8) 0.35, (32,24) 0.89, (50,40) 0.97ε ε ε= = =

(n,k) 
block coder

(n,k) 
block coder

k-bits n-bits

Number of 2-bit error patterns
Number of check-bits
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Some block codes that can be realized by cyclic codes 

(n,1) Repetition codes. High coding gain (minimum distance always n-
1), but very low rate: 1/n
(n,k) Hamming codes. Minimum distance always 3. Thus can detect 2 
errors and correct one error. n=2m-1, k = n - m, 
Maximum-length codes. For every integer            there exists a 
maximum length code (n,k) with n = 2k - 1,dmin = 2k-1. 
BCH-codes. For every integer             there exist a code with n = 2m-1, 

and                      where t is the error correction capability
(n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of 
m bits that are encoded to yield code words of n symbols. For these 
codes                                                           and
Nowadays BCH and RS are very popular due to large dmin, large number 
of codes, and easy generation
Code selection criteria: number of codes, correlation properties, code 
gain, code rate, error correction/detection properties

3k ≥

3≥m
≥ −k n mt min 2 1≥ +d t

2 1,number of check symbols  2= − − =mn n k t min 2 1= +d t

1: Task: find out from literature what is meant by dual codes!

3m ≥
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Defining cyclic codes: code polynomial 
and generator polynomial

An (n,k) linear code X is called a cyclic code when every cyclic shift of 
a code X, as for instance X’, is also a code, e.g. 

Each (n,k) cyclic code has the associated code vector with the n-bit code 
polynomial

Note that the (n,k) code vector has the polynomial of degree of n-1 or 
less. Mapping between code vector and code polynomial is one-to-one, 
e.g. they specify each other uniquely
Manipulation of the associated polynomial is done in a Galois field (for 
instance GF(2)) having elements {0,1}, where operations are performed 
mod-2. Thus results are always {0,1} -> binary logic circuits applicable
For each cyclic code, there exists only one generator polynomial whose 
degree equals the number of check bits q=n-k in the encoded word

1 2
1 2 1 0( ) n n

n np x p x p x p x− −

− −= + + + +X

1 2 1 0( )n nx x x x
− −

= ⇒X 2 3 0 1' ( )n n nx x x x
− − −

=X

1 2
2 3 0 1'( ) n n

n n np x p x p x p x− −

− − −= + + + +X
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Example: Generating of (7,4) cyclic code, 
by generator polynomial G(p)=p3 +p+1

3 2

3

3 3 2 3 2 3 2

6 5 3

(1101) 1
(1011) 1

( 1 ) ( 1 ) 1

p p
p p

p p p p p p p p

p p p

= = + +
= = + +
= = + + + + + + + +

= + +

M
G
X MG

4 3p p+ + 3 2

6 5 4 3 2

1

1 (1111111)

p p p

p p p p p p

+ + + +

= + + + + + + =

<- message

<- encoded word

<- generator

The same result obtained by Maple:
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Rotation of cyclic code yields another cyclic code

Theorem: A single cyclic shift of X is obtained by multiplication of pX
where after division by the factor pn+1 yields a cyclic code at the 
remainder:

and by induction, any cyclic shift i is obtained by

Example:

Important point of implementation is is that the division by pn+1 can be 
realized by a tapped shift register.

'( ) ( )mod( 1)np p p p= +X X

( ) ( )( ) ( )mod( 1)i i np p p p= +X X

not a three-bit code (1010),
divide by the common factor

3 3

( ) 1 011
1

1
1

p p p
p p

= + →
+
+

+
X

3( )p p p p→ +X

2101 ( ) 1p p→ → +X

3 3

3

1

1
1

1

p p p
p
p

+ +

+

+ ←

n-1 bit rotated code word

Shift left by 1 bit:
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Prove that

Note first that

then, by using (1) and (2)

Repeating the same division with higher degrees of  p yields then

'( ) ( )mod( 1)np p p p= +X X

1 2

1 2 1 0( ) n n

n np p x p x p x p x p−

− −
= + + + +X

1

1 2

1 2 1 0

1 1

1 2

2 1 0 1

1 )

'( )

n

n n n

n n

n

n n

n

n n

x
p x p x p x p x p

x p x
x p x p x p x p

−

−

− −

− −

−

− −

+ + + + +
+

+ + + + ← X

1 2
1 2 1 0( ) n n

n np x p x p x p x− −

− −= + + + +X

(1)

(2)

( ) ( )( ) ( )mod( 1)i i np p p p= +X X



13
Timo O. Korhonen, HUT Communication Laboratory

Cyclic codes and the common factor pn+1

Theorem: Cyclic code polynomial X can be generated by multiplying 
the message polynomial M of degree k-1 by the generator polynomial G 
of degree q=n-k where G is an q-th order factor of pn + 1. 
Proof: assume message polynomial:

and the n-1 degree code is

or in terms of G

Consider then a shifted code version…

1 2
1 01 2( ) k k

k kp m p m p m p x− −

− −= + + + +M

1 2
1 01 2( ) ( ) ( ) ( ) ( )k k

k kp p m p p m p p m p p x− −

− −= = + + + +X MG G G G G

1 2
1 2 1 0( ) n n

n np x p x p x p x− −

− −= + + + +X
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Now, if                              and assume G is a factor of pn+1 (not M), 
then X’(p) must be a multiple of G that we actually already proved: 

Therefore, X’ can be expressed by M1G for some other data vector M1
and X’ is must be a code polynomial.
Continuing this way for p(i)X(p), i = 2,3… we can see that X’’, X’’’ etc 
are all code polynomial generated by the multiplication MG of the 
respective, different message polynomials
Therefore, the (n,k) linear code X, generated by MG is indeed cyclic 
when G is selected to be a factor of  pn+1

2

2

1

1

1
1 2 1 0

1
2 1 0 1

( )
( 1) ( )
( 1) '( )

n

n

n

n

n n
n n

n
n n

p p x p x p x p x p
x p x p x p x p x
x p p p

−

−

−

− −

−

− −

= + + + +
= + + + + + +
= + + =

X

X MG

( )p p p=X MG

'( ) mod( 1)nX p p p= +MG

G is a factor of pn+1

term has the factor pn+1 must be a multiple of G
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Cyclic Codes & Common Factor

221 7 4 21, 3 7 21 1 , 7
1 3 3
2 3 2
3 3 1

x y p
x y
x y
x y

+ = ⋅ ⋅ = = + =
= ⇒ = ⋅
= ⇒ = ⋅
= ⇒ = ⋅

M

2

2

1

1

1
1 2 1 0

1
2 1 0 1

( )
( 1) ( )
( 1) '( )

n

n

n

n

n n
n n

n
n n

p p x p x p x p x p
x p x p x p x p x
x p p p

−

−

−

− −

−

− −

= + + + +
= + + + + + +
= + + =

1M G

X

X MG
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Factoring cyclic code generator polynomial

Any factor of pn+1 with the degree of q=n-k
generates an (n,k) cyclic code
Example: Consider the polynomial p7+1. This can be factored as

Both the factors p3+p+1 or p3,+p2+1 can be used to generate an unique 
cyclic code. For a message polynomial p2 +1 the following encoded 
word is generated:

and the respective code vector (of degree n-1 or smaller) is

Hence, in this example

7 3 3 21 ( 1)( 1)( 1)p p p p p p+ = + + + + +

2 3 5 2( 1)( 1) 1p p p p p p+ + + = + + +

(n,k) 
cyclic encoder

(n,k) 
cyclic encoder

k-bits n-bits

0101 0100111

0100111

3
7 4

q n k
n k

= = −⎧
⎨ = ⇒ =⎩
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Example of Calculus of GF(2) in Maple
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Encoder applies shift registers for multiplication of 
data by the generator polynomial

Figure shows a shift register to realize multiplication by p3 +p+1

In practice, multiplication can be realized by two equivalent topologies:

unit delay 
element

XOR-circuit

Data in

Encoded bits

x0x1xn-1

Note that the tap order
is opposite in these
topologies

Fibonacci-form

Galois-form Delay 
element
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Example: Multiplication of data by a shift register

out
1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0

generator polynomial
determines connection
of tapsword to be

encoded

Encoded word

3

4 2

( 1)( 1)p p p

p p p

+ + +

= + + 3p p+ +
4 3 2

1

1 11101p p p

+

= + + + →

x0x1x3

1 2
1 2 1 0( ) n n

n np x p x p x p x− −

− −= + + + +X
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Determines tap 
connections

Word to be rotated
(divided by the common factor)

Adding the dashed-line (feedback)
enables division by pn+1

Remainder

Calculating the remainder (word rotation) by a shift 
register

X A B C D
0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

2

3

101 ( ) 1
( )

p p
p p p p

→ = +
= +

X
X

3 3

( ) 1 0
1

1
1

p p p
p p

= + →
+

11+
+

X

Remainder is left to the
shift register

1 0 1

load / read

Alternate way to 
realize rotation

x0xn-1

Maple script:
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Examples of cyclic code generator polynomials

The generator polynomial for an (n,k) cyclic code is defined by

and G(p) is a factor of pn+1, as noted earlier. Any factor of pn+1 that has 
the degree q (the number of check bits) may serve as the generator 
polynomial. We noticed earlier that a cyclic code is generated by the 
multiplication 

where M(p) is the k-bit message to be encoded
Only few of the possible generating polynomials yield high quality 
codes (in terms of their minimum Hamming distance) 

1

1 1( ) 1,q q

qp p p g pg q n k−

−
= + + + = −G

( ) ( ) ( )p p p=X M G

Some cyclic codes:

3( ) 0 1p p p= + + +G
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Systematic cyclic codes

Define the length q=n-k check vector C and the length-k message 
vector M by

Thus the systematic n:th degree codeword polynomial is

1

1 1 0( ) k

kp m p m p m−

−
= + + +M

1

1 1 0( ) q

qp c p c p c−

−
= + + +C

1

1 1 0

1

1 1 0

( ) ( )

( ) ( )

n k k

k

q

q

q

p p m p m p m
c p c p c

p p p

− −

−

−

−

= + + +
+ + + +

= +

X

M C

Question: Why these denote the message bits still 
the message bits are M(p) ???

How to determine the check-bits??

check bits

message bits

(n,k) 
cyclic encoder

(n,k) 
cyclic encoder

k-bits n-bits
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Determining check-bits

Note that the check-vector polynomial           is the remainder left over 
after dividing  

( ) ( ) ( ) ( ) ( )qp p p p p p= = +X M G M C

( ) ( )( )
( ) ( )

n kp p pp
p p

−

= +
M CM

G G

( ) / ( )n kp p p− M G
( )pC

Example: (7,4) Cyclic code:

[ ]( ) mod ( ) / ( )n kp p p p−⇒ =C M G

1010 -> 1010001

3 2

3

7 4 6 4

( ) 1
( )

( )

p p p
p p p

p p p p−

= + +
= +

= −

G
M

M

3 2

3 3 6 4

( )( )

( ) / ( ) 1 1

( ) ( ) ( ) 1 1

n k

n k

pp

p p p p p

p p p p p p p p

−

−

= + + +

+ = + + = + +

CQ

M G

M C

Definition of systematic cyclic code
⇒

7 7 5 11
5 5

− ⋅
= +
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Division of the generated code by the generator 
polynomial leaves no reminder

3 2

3 2 6 4

6 5 3

5 4 3

5 4 2

3 2

3 2

1

1 1

1

1
1

p p

p p p p
p p p
p p p
p p p
p p
p p

+ +

+ + + +

+ +

+ + +
+ +

+ +
+ +

3 2

3 3 6 4

( )( )

( ) / ( ) 1 1

( ) ( ) ( ) 1 1

n k

n k

pp

p p p p p

p p p p p p p p

−

−

= + + +

+ = + + = + +

CQ

M G

M C

3 2

3

7 4 6 4

( ) 1
( )

( )

p p p
p p p

p p p p−

= + +
= +

= −

G
M

M

This can be used for error 
detection/correction as we inspect later
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Circuit for encoding systematic cyclic codes

We noticed earlier that cyclic codes can be generated by using shift 
registers whose feedback coefficients are determined directly by the 
generating polynomial
For cyclic codes the generator polynomial is of the form

In the circuit, first the message flows to the shift register, and feedback 
switch is set to ‘1’, where after check-bit-switch is turned on, and the 
feedback switch to ‘0’, enabling the check bits to be outputted 

1

0

1 2
1 2 1( ) 1q q q

q qp p p g p g pg− −

− −= + + + + +G
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Decoding cyclic codes

Every valid, received code word R(p) must be a multiple of G(p), 
otherwise an error has occurred. (Assume that the probability of noise to 
convert code words to other code words is very small.) 
Therefore dividing the R(p)/G(p) and considering the remainder as a 
syndrome can reveal if an error has happed and sometimes also to reveal 
in which bit (depending on code strength)
Division is accomplished by a shift registers 
The error syndrome of q=n-k bits is therefore

This can be expressed also in terms of the error E(p) and the 
code word X(p) while noting that the received word is in terms of error

[ ]( ) mod ( ) / ( )p p p=S R G

( ) ( ) ( )p p p= +R X E

[ ]{ }
[ ]

( ) mod ( ) ( ) / ( )

( ) mod ( ) / ( )

p p p p

p p p

= +

=

S X E G

S E G

hence
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Decoding cyclic codes: syndrome table

[ ]16.20 ( ) mod ( ) / ( )s x e x g x=
Using denotation of this example:
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( )g x

[ ]( ) mod ( ) / ( )s x r x g x=

Table 16.6Decoding cyclic codes: error correction
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Decoding circuit for (7,4) code 
syndrome computation

To start with, the switch is at “0” position
Then shift register is stepped until all the received code bits have 
entered the register
This results is a 3-bit syndrome (n - k = 3 ): 

that is then left to the register
Then the switch is turned to the position “1” that drives the 
syndrome out of the register
Note the tap order for Galois-form shift register

3( ) 1p p p= + +G

1
0

received code syndrome

x0 x1 xn-1

[ ]( ) mod ( ) / ( )p p p=S R G
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Lessons learned

You can construct cyclic codes starting from a given factored pn+1 
polynomial by doing simple calculations in GF(2)
You can estimate strength of designed codes
You understand how to apply shift registers with cyclic codes
You can design encoder circuits for your cyclic codes
You understand how syndrome decoding works with cyclic codes and
you can construct the respect decoder circuit
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