Fading multipath radio channels

- Narrowband channel modelling
- Wideband channel modelling
- Wideband WSSUS channel (functions, variables & distributions)

Low-pass equivalent (LPE) signal

Spectrum characteristics of LPE signal

Radio channel modelling

Narrowband modelling	Wideband modelling
Calculation of path loss e.g. taking into account	Deterministic models (e.g. ray tracing,
 reflections diffraction 	Stochastical models
- scattering	(e.g. WSSUS)

Basic problem: signal fading

Basic problem: signal dispersion

Signal fading in a narrowband channel

fade <=> signal replicas received via different propagation paths cause destructive interference

Fading: illustration in complex plane

Wideband channel modelling: in addition to magnitudes and phases, also path delays are important.

Propagation mechanisms

Countermeasures: narrowband fading

- Diversity (transmitting the same signal at different frequencies, at different times, or to/from different antennas)
 - will be investigated in later lectures
 - wideband channels => multipath diversity
- Interleaving (efficient when a fade affects many bits or symbols at a time), frequency hopping
- Forward Error Correction (FEC, uses large overhead)
- Automatic Repeat reQuest schemes (ARQ, cannot be used for transmission of real-time information)

Bit interleaving

Channel Impulse Response (CIR)

CIR of a wideband fading channel

The CIR consists of L resolvable propagation paths

Received multipath signal

Transmitted signal:

$$s(t) = \sum_{k=-\infty}^{\infty} b_k p(t-kT)$$

$$rac{1}{1}$$
complex symbol pulse waveform

Received signal:

$$r(t) = h(t) * s(t) = \int_{-\infty}^{\infty} h(\tau, t) s(t-\tau) d\tau$$

$$=\sum_{i=0}^{L-1}a_{i}\left(t\right)e^{j\phi_{i}\left(t\right)}s\left(t-\tau_{i}\right)\qquad \int f\left(t\right)\delta\left(t-t_{0}\right)dt=f\left(t_{0}\right)$$

Received multipath signal

The received multipath signal is the sum of L attenuated, phase shifted and delayed replicas of the transmitted signal s(t)

Received multipath signal

The normalized delay spread is an important quantity. When D << 1, the channel is

- narrowband
- frequency-nonselective
- flat

and there is no intersymbol interference (ISI).

When D approaches or exceeds unity, the channel is

- wideband
- frequency selective
- time dispersive

Important feature has many names!

In a Gaussian channel (no fading) BER < = > Q(S/N)erfc(S/N)

Flat fading (Proakis 7.3): $BER = \int BER(S/N|z) p(z) dz$ z = signal power level

Frequency selective fading <=> irreducible BER floor

Diversity (e.g. multipath diversity) <=> improved performance

Time-variant transfer function

Time-variant CIR:
$$h(\tau,t) = \sum_{i=0}^{L-1} a_i(t) e^{j\phi_i(t)} \delta(\tau - \tau_i)$$

Time-variant transfer function (frequency response):

$$H(f,t) = \int_{-\infty}^{\infty} h(\tau,t) e^{-j2\pi f\tau} d\tau = \sum_{i=0}^{L-1} a_i(t) e^{j\phi_i(t)} e^{-j2\pi f\tau_i}$$

In a narrowband channel this reduces to:

$$H(f,t) = \sum_{i=0}^{L-1} a_i(t) e^{j\phi_i(t)}$$

Example: two-ray channel (L = 2)

$$h(\tau) = a_1 e^{j\phi_1} \delta(\tau - \tau_1) + a_2 e^{j\phi_2} \delta(\tau - \tau_2)$$

$$\square$$
$$H(f) = a_1 e^{j\phi_1} e^{-j2\pi f\tau_1} + a_2 e^{j\phi_2} e^{-j2\pi f\tau_2}$$

At certain frequencies the two terms add constructively (destructively) and we obtain:

$$|H(f_{constructive})| = a_1 + a_2$$

$$|H(f_{destructive})| = |a_1 - a_2|$$

$$f$$

Deterministic channel functions

Stochastical (WSSUS) channel functions

Stochastical (WSSUS) channel variables

Maximum delay spread: T_m

Maximum delay spread may be defined in several ways.

For this reason, the RMS delay spread is often used instead:

$$\sigma_{\tau} = \sqrt{\frac{\int \tau^2 \phi_h(\tau) d\tau}{\int \phi_h(\tau) d\tau}} - \left[\frac{\int \tau \phi_h(\tau) d\tau}{\int \phi_h(\tau) d\tau}\right]^2$$

Stochastical (WSSUS) channel variables

Implication of coherence bandwidth:

If two sinusoids (frequencies) are spaced much less apart than B_m , their fading performance is similar.

If the frequency separation is much larger than B_m , their fading performance is different.

Stochastical (WSSUS) channel variables

Maximum Doppler spread: B_d

The Doppler spectrum is often U-shaped (like in the figure on the right). The reason for this behaviour is the relationship (see next slide):

$$v = \frac{V}{\lambda} \cos \alpha = f_d \cos \alpha \quad f_d \cos \alpha \quad f_d = S_H(v) \approx p(v)$$

Task: calculate p(v) for the case where $p(\alpha) = 1/2\pi$ (angle of arrival is uniformly distributed between 0 and 2π).

Physical interpretation of Doppler shift

Delay - Doppler spread of channel

Fading distributions (Rayleigh)

In a flat fading channel, the (time-variant) CIR reduces to a (time-variant) complex channel coefficient:

$$c(t) = a(t)e^{j\phi(t)} = x(t) + j y(t) = \sum_{i} a_{i}(t)e^{j\phi_{i}(t)}$$

When the quadrature components of the channel coefficient are independently and Gaussian distributed, we get:

Fading distributions (Rice)

In case there is a strong (e.g., LOS) multipath component in addition to the complex Gaussian component, we obtain:

$$c(t) = a_0 + a(t)e^{j\phi(t)} = a_0 + \sum_i a_i(t)e^{j\phi_i(t)}$$

From the joint (magnitude and phase) pdf we can derive:

Representation in complex plane

Complex Gaussian distribution is centered at the origin of the complex plane => magnitude is Rayleigh distributed, the probability of a deep fade is larger than in the Rician case Complex Gaussian distribution is centered around the "strong path" => magnitude is Rice distributed, probability of deep fade is extremely small

Countermeasures: wideband systems

- Equalization (in TDMA systems)
 - linear equalization
 - Decision Feedback Equalization (DFE)
 - Maximum Likelihood Sequence Estimation (MLSE) using Viterbi algorithm
- Rake receiver schemes (in DS-CDMA systems)
- Sufficient number of subcarriers and sufficiently long guard interval (in OFDM or multicarrier systems)
- Interleaving, FEC, ARQ etc. may also be helpful in wideband systems.