

Let the information sequence $u = (1 \ 0 \ 1 \ 1 \ 1)$. Then the output sequences are $\mathbf{v}^{(1)} = (1 \quad 0 \quad 1 \quad 1 \quad 1) * (1 \quad 0 \quad 1 \quad 1) = (1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1)$ $\mathbf{y}^{(2)} = (1 \ 0 \ 1 \ 1 \ 1) * (1 \ 1 \ 1 \ 1) = (1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1)$ and the code word is $\mathbf{v} = (1 \ 1, \ 0 \ 1, \ 0 \ 0, \ 0 \ 1, \ 0 \ 1, \ 0 \ 1, \ 0 \ 0, \ 1 \ 1).$ If the generator sequences $\mathbf{g}^{(1)}$ and $\mathbf{g}^{(2)}$ are interlaced and then arranged in the matrix g⁽¹⁾g⁽²⁾ $g_{1}^{(1)}g_{1}^{(2)}$ $g_{2}^{(1)}g_{2}^{(2)}$ $g_{m}^{(1)}g_{m}^{(2)}$ 80⁽¹⁾80⁽²⁾ $g_{1}^{(1)}g_{1}^{(2)}$... $g_{m-1}^{(1)}g_{m-1}^{(2)}$ $g_{m}^{(1)}g_{m}^{(2)}$ $g_0^{(1)}g_0^{(2)}$ $\dots g_{m-2}^{(1)} g_{m-2}^{(2)} g_{m-1}^{(1)} g_{m-1}^{(2)}$ $g_m^{(1)} g_m^{(2)}$ $\mathbf{G} =$ where the blank areas are all zeros, the encoding equations can be rewritten in matrix form as $\mathbf{v} = \mathbf{u}\mathbf{G}$ where all operations are modulo-2. G is called the generator matrix of the code. Note that each row of G is identical to the preceding row but shifted n = 2 places to the right, and that G is a semi-infinite matrix, corresponding to the fact that the information sequence u is of arbitrary length. If u has finite length L, then G has L rows and 2(m + L) columns, and v has length 2(m + L). 7 ____ S.Lin, D.J. Costello: Error Control Coding, II ed, p. 456

Coding • Here is a t code gain	gain for $able of s$	OT SC ome s 2 exp	ome so elected cessed fo	elect	ed co	onvolutional codes
	C gree	$\gamma = 10$	0 log ₁₀ ($R_{c}d_{free}$	/2) dI	B
	n	k	R _c	L	d _f	$R_c d_f/2$
	4	1	1/4	3	13	1.63
	3	1	1/3	3	10	1.68
	2	1	1/2	3	6	1.50
				6	10	2.50
				9	12	3.00
	3	2	2/3	3	7	2.33
i.	4	3	3/4	3	8	3.00
Tan O Kadaman HITCom	micrition Laboration					
Inno O. Kornonen, HUI Commu	nication Laboratory					

