

S-72.3340 Optical Networks Course Lecture 6: MultiService Optical Networks

Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9 451 2318, E-mail: edward.mutafungwa@tkk.fi

Lecture Outline

- □ Introduction
- Data-Centric Client Layers
 - ATM
 - IP
 - Ethernet
 - SAN
- Next-Generation SDHOTN Standard
- Conclusion

1. Introduction

□ Last week

- Focused on optical TDM-based circuit switched networks (PDH, SDH/SONET)
- Optimized for voice communications

🗆 But...

- Non-voice traffic now dominates in quantity (80/20% reverse)
- Voice revenues are dwindling
- Uncertainty on non-voice revenues
- Operators need reliable revenue streams
 - Broaden service offering \Rightarrow "One-stop shopping" for customers
 - Reduce operating expenditure by being more flexibility to meet demand all service types

1. Introduction

Increased use of buzz words (e.g. "triple play" services for home users) and business models (e.g. "multiservice provisioning")

□ Need for multiservice networks

 Networks that provide more than one distinct communications service type over a common physical infrastructure (optical, wireless, copper etc.)

puhe

TKK Tietoliikennelaboratorio HUT Communications Laboratory

2. ATM

□ Asynchronous Transfer Mode (ATM)

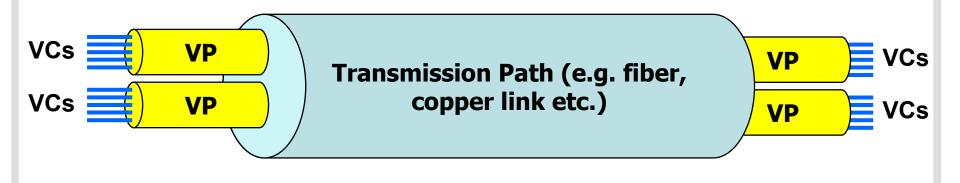
- Main goal was the integration of voice (SDH, PDH) and data (e.g. IP, frame relay) networks
- Uses fixed length cells of 53 bytes
 - Fixed packet size enable development low-cost high-speed ATM switches

5 bytes	48 bytes
, Overhead	Payload

- Length is compromise between conflicting requirements of voice and data
 - Small packet size good for voice since delay is short
 - Large size good for data since overhead is small fraction of cell

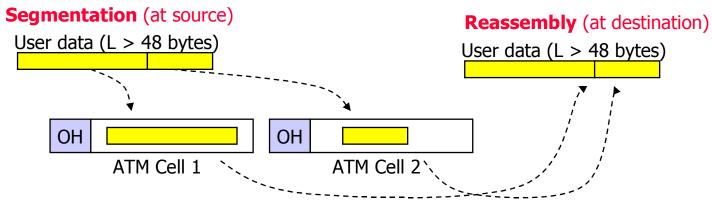
2. ATM

Main motivation for use of ATM is the quality-ofservice (QoS) guarantees it provides


QoS guarantees in form of bounds on cell loss, cell delay and jitter (delay variations)

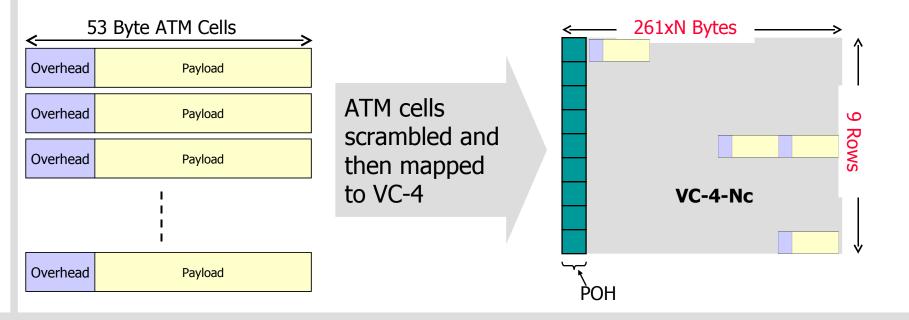
- "Traffic contracts" offered to different service classes (constant bit rate [CBR], unspecified bit rate [UBR] etc.)
- Enforcing of the traffic contracts
 - Admission control to maintain existing QoS guarantees
 - Traffic shaping at entry points
 - Continuous traffic policing for contract adherence

2.1 Functions of ATM


- ATM connections are termed virtual circuits (VC) and these are bundled into virtual paths (VP) on common links
 - Cell headers have VC identifier (VCI) and VP identifier (VPI) labels for addressing
 - Two level labels (VPI and VCI) simplifies cell forwarding and ATM switch designs
 - Switches maintain routing tables and read VCI/VPI to determine outgoing link for forwarding cells and enable rewriting of VCI/VPI fields on header

2.2 ATM Adaptation Layer

- Services/applications using ATM (e.g. video, IP) usually have variable packet sizes
- ATM adaptation layer (AAL) for mapping user data into ATM cells by segmentation and reassembly (SAR) of user data

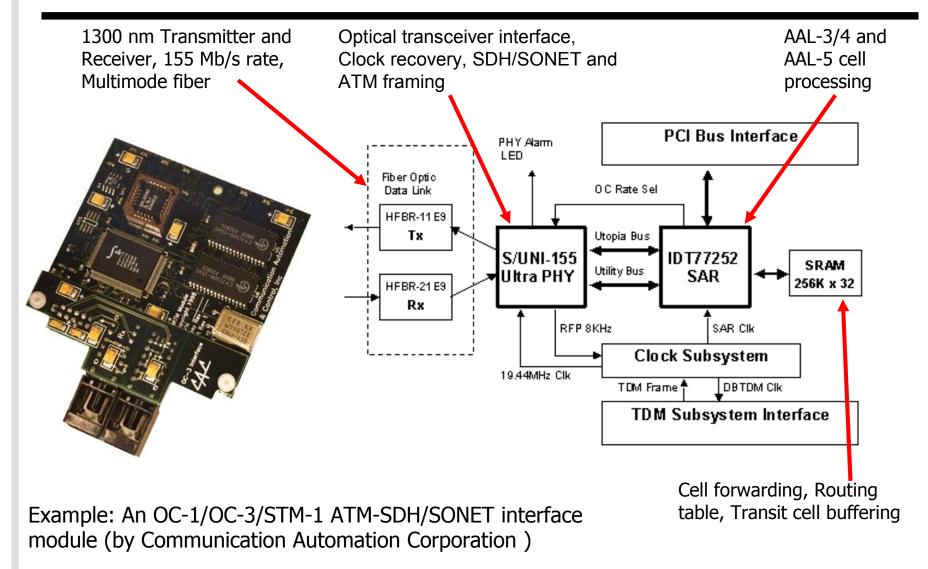

- ITU defines the following AALs depending on service type
 - AAL-1 \Rightarrow for CBR connection-oriented services e.g. E1 circuit emulation
 - AAL-2 \Rightarrow for CBR real-time data e.g. video, voice etc.
 - AAL-3/4 (merged) \Rightarrow for VBR data traffic e.g. frame relay
 - AAL-5 \Rightarrow for VBR variable packet size traffic e.g. classic IP over ATM

TKK Tietoliikennelaboratorio HUT Communications Laboratory

2.3 ATM Optical Physical Layer Interfaces

□ Optical interfaces originally defined by the ATM Forum

- Enables interfacing to SDH/SONET terminal equipment
- Defines framing structure for the transport of ATM cells over SDH
 - Uses VC-4-Nc frames with a concatenated or locked payload, where N=1 for 155.52 Mb/s, N=4 for 622.08 Mb/s and N=64 for 10 Mb/s interfaces


2.3 ATM Optical Physical Layer Interfaces

Example: 622.08 Mb/s Physical Layer Specification (AF-PHY-0046.000, Jan. 1996) parameters

	Link length	Transmitter	Wavelength window	Receiver sensitivity	Dispersion
Singlemode Fiber	2 km (SR) 15 km (IR)	LED (SR) MLM (IR)	1310 nm 1310 nm	-23 to -28 dBm	13 ps/nm (SR), 74 ps/nm (IR)
Multimode Fiber	300 m	LED	1310 nm	-26 dBm	—
Multimode Fiber	300 m	Short λ laser	850 nm	-16 dBm	_

SR: Short Reach, IR: Intermediate Reach

2.3 ATM Optical Physical Layer Interfaces

HUT Communications Laborate

3. Internet Protocol (IP)

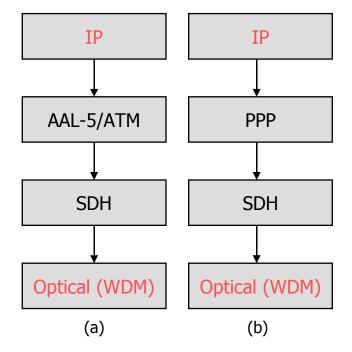
Most widely used wide-area networking technology

- Underlying networking protocol used in the Internet and private intranets
- Flexible as it is designed to work above variety of data link layers e.g. Ethernet, ATM, ISDN
- IP is a network layer protocol (routing functions etc.)
 - Therefore IP does not guarantee reliable data delivery
 - Relies on transmission control protocol (TCP) or user datagram protocol (UDP) to keep track of packets and retransmit if needed

3. Internet Protocol (IP)

IP layer increasingly generates the majority of traffic on existing networks

and...


Optical systems provide largest traffic carrier pipes

A recurring theme is how best to transmit IP traffic over the optical (WDM) layer?

Also referred to as IP over WDM

3. Internet Protocol (IP)

- Several layering structures possible for mapping IP to optical layer
 - Traditional Implementation: IP packets ⇒ AAL-5 ⇒ ATM cells ⇒ SDH/SONET framing (up to 25% bandwidth wasted on overhead!)
 - IP directly over SDH or "packet-over-SONET": IP packets ⇒ PPP (variable length) frames ⇒ SDH/SONET framing

3.1 IP QoS

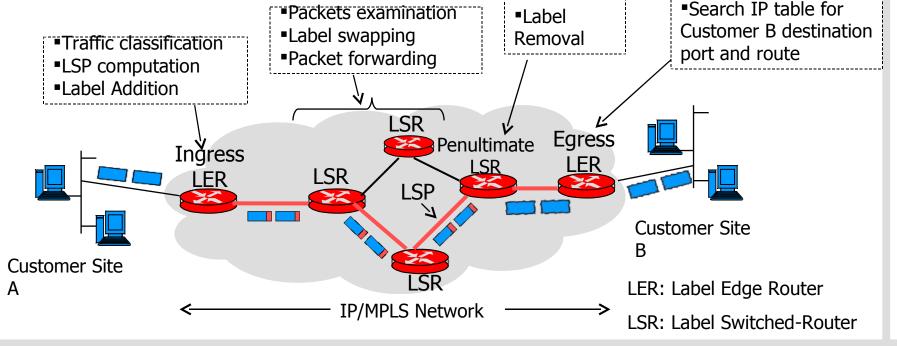
- □ IP provides only a "best-effort delivery" service
- □ Arriving IP packets may be:
 - Damaged
 - Out of sequence
 - Duplicated
 - Dropped entirely

□ If an application requires solid QoS assurances, it is provided by other means e.g. MPLS

3.2 IP/MPLS

$\Box MPLS \Rightarrow Multiprotocol Label Switching$

- Originally a Cisco proprietary proposal then adapted by IETF for open standardization
- Combines IP Layer 3 service opportunities with traffic management control of Layer 2 switching
- MPLS label set and routing tables used for setting up label switched path (LSP) between nodes in networks
 - MPLS pushed or imposed between IP and layer 2 headers
 - Or in Layer VPI/VCI fields if IP packet is being carried in ATM cells


L2	MPLS	IP	ID data
header	label	header	IP data

3.2 IP/MPLS

□ IP/MPLS enable connectionless IP networks to operate in a more connected and managed way

- Allows LSPs to be setup by different criteria
- Able to provide QoS assurances e.g. guaranteed bandwidth

3.2 IP/MPLS

Today providers pursuing IP/MPLS infrastructure as convergence mechanism

- ATM, Frame Relay, Ethernet etc. networks folded into edges of IP/MPLS core
- Also MPLS virtual private networks (VPNs) are of great interest

3.3 Wither ATM?

- ATM initially viewed as replacement for IP because of its QoS capabilities
 - ATM has suffered because of slow development of standards
 - ATM also has complex provisioning and high cost interfaces
 - IP has survived due to its ubiquity and service creation capabilities

3.3 Wither ATM?

- MPLS now provides IP networks with QoS capabilities similar to ATM
 - MPLS better optimized for larger data packets (~1500 bytes)
 - Running IP packets through AALs increases overhead (inefficient)
 - IP/MPLS is expected to gradually displace ATM in the network core
- □ ATM still employed in various areas
 - Wireless backhaul
 - Multiplexing in DSL networks
 - Some LAN backbones

4. Optical Ethernet

- Widespread use of 10 Mb/s Ethernet and 100 Mb/s Ethernet (Fast Ethernet)
 - The de facto Layer 2 standard for local area networks (LANs)
- □ Numerous devices now shipped with Ethernet ports
 - PCs, servers, switches, routers, WiFi access points, VoIP equipment etc.
 - Example: Broadcom shipped 2 billion Ethernet ports between 1995 and June 2006 (Source: PRNewswire)

4. Optical Ethernet

- Now Ethernet deployments extend from LANs into access networks, MANs and WANs
- □ Advantages of Ethernet/IP compared to SDH/SONET and ATM implementations
 - A mature well understood technology
 - Low cost technology in terms of equipment and operations costs
 - Easier to provision connections
 - Dynamic bandwidth usage and sharing
 - Adaptible to any topology type (ring, star, mesh etc.)
 - Flexible capacity scaling with standards now existing for Gigabit Ethernet and 10 Gigabit Ethernet

4.1 Optical Ethernet PHY

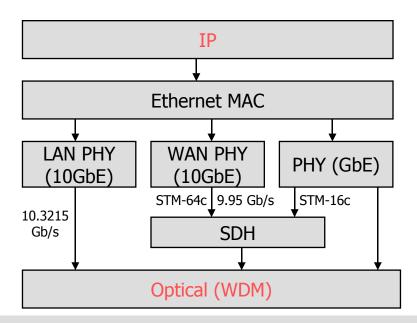
□ Gigabit Ethernet or GbE (IEEE 802.3z)

- Offers nominal 1 Gbit/s rate in both directions
- Backward compatible with 10 Mbit/s and 100 Mbit/s Ethernet technologies
- □ Transmission media used for GbE
 - Category 5e (or higher) unshielded twisted copper pairs (1000Base-T)
 - Singlemode and multimode fibers, 1000Base-x, where x depends on the physical layer interface used
 - Example: 1000Base-SX for 850 nm operation over a short-reach multimode fiber

4.1 Optical Ethernet PHY

□ 10 Gigabit Ethernet or 10GbE (IEEE 802.3ae)

- 10 Gbit/s in both directions
- Backward compatible with previous Ethernet standards


□ 10GbE mostly fiber only technology

- 10GBase-x, where x depends on the physical layer interface used (SR: short reach etc.)
- Copper interface (10G BASE-T) recently proposed for very short (<30m) links

4.1 Optical Ethernet PHY

- Physical layer (PHY) of GbE and 10GbE defined to move Ethernet traffic:
 - Across SDH networks (WAN PHY for 10GbE)
 - Directly over single wavelength channel or WDM networks (LAN PHY for 10GbE)

March 2007

EMU/S-72.3340/MultiserviceNetworks/

Slide 25 of 67

- □ GbE initially proposed for LANs with range of about 2km over multimode fibers
- The move into MAN/WANs requires Ethernet optical transcievers suitable for:
 - Long range singlemode fiber transmission
 - WDM (either CWDM or DWDM) operation
 - Optical amplification
- But operators also need to extend useful life of existing GbE and 10GbE switching products

- □ Use pluggable optical transceivers to adapt GbE for operation in access networks, MANs or WANs
 - Converts electrical signals within Ethernet switch port into optical signals
 - Could also provided measurements of optical signal power, wavelengths etc. for monitoring purposes

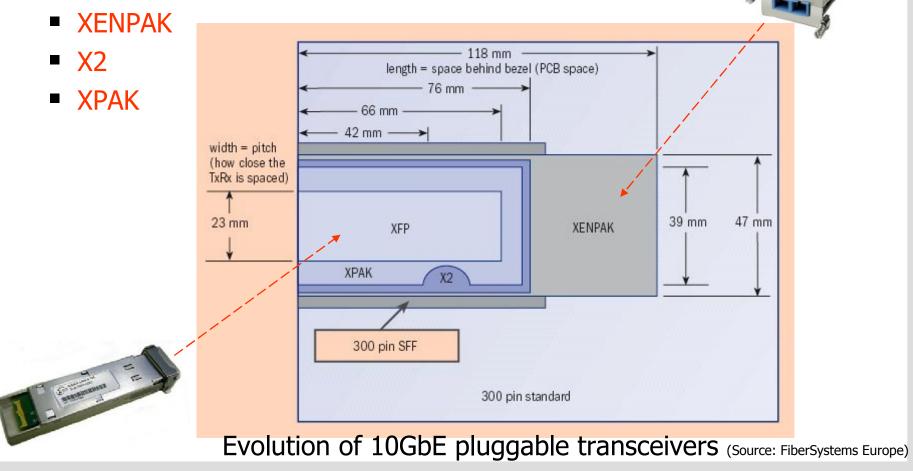
Source: Endace

Pluggable optics for GbE

- Gigabit Interface Converters (GBICs)
 - Plug-and-play
 - Hot-swappable
 - About 3cm width

Source: Extreme Networks, Asante

- Small Form-factor Pluggable (SFP)
 - Plug-and-play
 - Hot-swappable
 - Width about 13 mm ⇒ better port density
 - Just wider than RJ-45 connector


Source: Finisar

□ Pluggable optics for 10GbE

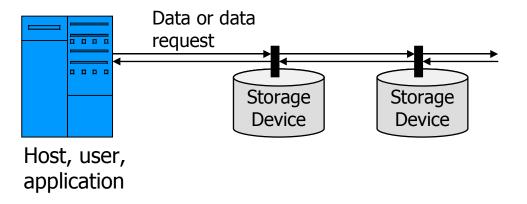
10G Small Form-factor Pluggable (XFP)

5. Storage Area Networks (SAN)

Enterprises, Government agencies and public sector organizations

- Discarding paper in favour of electronic data
- Migrating some of their main business operations (customer care, billing, e-filing etc.) online
- 24hr × 365days availability requirement for data and applications
 - Always open web storefront, outsourced care, globalization

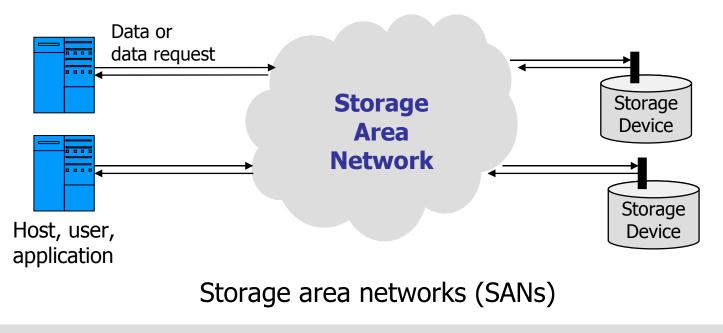
5. Storage Area Networks (SAN)


- Disaster recovery planning to rescue or recover mission-critical data is now absolutely essential
 - Example 1: 93% of companies that had data outage for 10 days or more filed for bankruptcy within a year (Source: US National Archives and Records...)
 - Example 2: Basel II Accords (June 2004) providing international standardized measure of banks credit rating ⇒ data-backup strategy one of the considered factors
 - Example 3: Average revenue loss per hour caused by data unavailability for different business types:
 - €53,300/hr for tele-ticket sales
 - €5m/hr for brokerage operations (Source: Dataquest)

March 2007

5.1 SAN Architecture

- Previously data exchange and backup confined to enterprise LAN (likely in the same building)
 - Traffic congestion commonplace
 - No redundancy by directly attaching storage devices to LAN servers
 - Little or nothing to recover if disaster hits the enterprise's site


Directly or network attached storage devices

5.1 SAN Architecture

□ LAN-free backup using SANs necessary

- Dedicated high speed links for data recovery
- Shared storage ⇒ reduced cost
- Storage capacity and resources can be added without shutting down LAN servers or networks
- Could employ two (primary and secondary) data centers for increased redundancy

5.1 SAN Architecture

- Now fashionable to move SANs to very distant locations from enterprise sites
 - Secondary data centers 10s or 100s km from enterprise site
 - Provides more resilience against disasters e.g. earthquakes
 - Allows company to locate large peripherals in cheaper suburban areas

Hurricane Katrina, 2005

Kobe Earthquake, 1995

5.2 SAN Standards

- SAN data rates (usually expressed in Bytes/second) should be easily scalable for future growth
 - Amount of electronically stored data growing at a rate of 40%-80% per year
 - Data from remote storage site should appear like its coming from a local source
- □ Storage connectivity earlier used copper links
 - Insufficient capacity and unreliable
- □ Now mostly use high capacity optical systems
 - Fiber links (multimode and singlemode)
 - Low cost optical components e.g. LEDs, multilongitudinal mode (MLM) lasers, GBICs etc.
 - SDH/SONET, GbE/10GbE, DWDM or CWDM transmission

5.2 SAN Standards

Various optical SAN proprietary technologies and standards exist

Technology Developer / date		Profile	Max. Rate (MByte/s)	Physical Interface
ESCON: Enterprise Systems Connection	IBM/ 1980s	 Serial interface, half duplex I/O switches capable of providing dynamic connectivity for up to 60 fiber optic links 	17	LED/MMF, MLM/SMF
HIPPI: HIgh Performance Parallel Interface	ANSI/ 1980s	 Widely deployed in supercomputer installations Uses switches like ESCON 	200	MLM/SMF
FC: Fiber Channel	ANSI/ Early 1990s	 Initially used for supercomputers, now a popular SAN standard Deployed in point-to-point, arbitrated loop and switched topologies Runs other protocols e.g. HIPPI, ESCON FC over TCP/IP (FCIP) and internet FC protocol (iFCP) allows FC to use IP networks and routers 	800 2400 (not backward compatible)	MLM/SMF SLM/SMF
FICON: Fiber Connection	IBM	 Takes the ESCON protocol and maps it onto FC transport Improves ESCON by increasing distance, rates, concurrent connections etc. 	400	MLM/SMF SLM/SMF
iSCSI: Internet Small Computer System Interface	IETF/ 2003	 SCSI protocol popular storage access protocol iSCSI is SCSI protocol over a TCP/IP network Main competitor of the FC protocol 	IP network capacity limit	Installed fiber base

5.2 SAN Standards

- □ Example: Time to recovery 60 terabytes (60 × 10³ GB) of data across a metro area
 - Using STM-1 connection \Rightarrow 49 days
 - Using ESCON connection \Rightarrow 45 days
 - Using 200 MB/s FC connection \Rightarrow 8 days
 - Using 400 MB/s FC over 64 wavelength channel DWDM system \Rightarrow 1.5 hours
- □ If recovery durations longer than several days
 - May be better to use PTAM or "Pick-up truck access method"
 - Manually transport storage devices from data center

5.2 SAN Standards

□ Enterprise IT departments decision making on SAN solutions

- Recovery Time Objective ⇒ how long an enterprise can wait before systems are recovered, resynchronized and back in service
- Recovery Point Objective ⇒ amount of data an enterprise can afford to have lost once operations are restored

STORAGE	SERVIO	CES: S	SOMETHING	FOR EVERYO	NE
Service	RTO R	RPO	Number of sites	Technolog Storage/server	y Network
		ero to ninutes	2 to 3	server clusters with synchronous disk mirroring and stand-by servers	DWDM/CWDM
Fast data recovery	hours n	ninutes	1 to 2	synchronous disk mirroring and stand-by servers	DWDM/CWDM Fibre Channel over IP SONET/SDH
Slow disaster recovery	day h	nours	1 to 2	asynchronous disk mirroring or electronic tape vaulting	CWDM Fibre Channel over IP SQNET/SDH
Off-site backup	day(s) d	lay(s)	1 to 2	tape and "safe"	PTAM (Pick-up truck access method)

March 2007

EMU/S-72.3340/MultiserviceNetworks/

6. Next Generation SDH/SONET

Conventional SDH/SONET has several limitations

- Traffic carried in streams with fixed speeds (e.g. STM-16, E4 etc.)
- Lack of built in capability to dynamically alter speed of streams according to usage

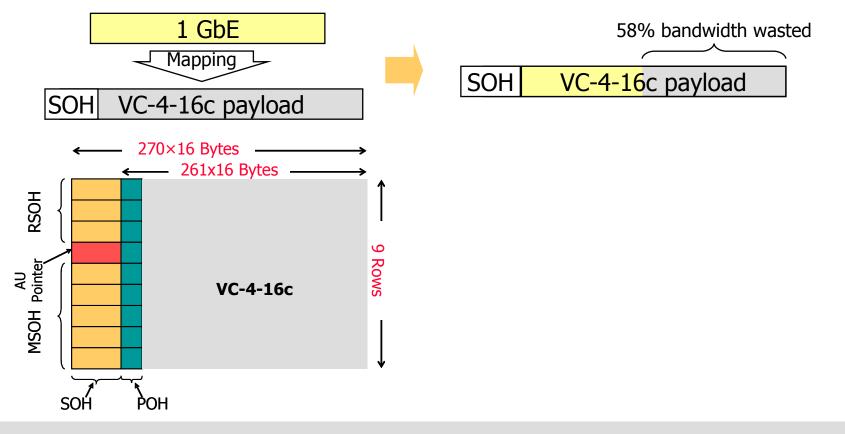
SDH/SONET originally designed for circuit-switched voice traffic

- Unsuitable for asynchronous packet-switched bursty data traffic
- Four-fold capacity increase increments (e.g. from STM-1 to STM-4) ⇒ Inflexible provision of capacity to users

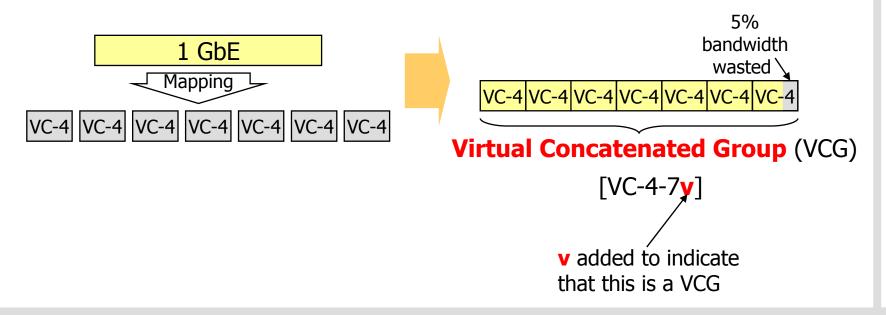
Facing competition from data-centric standards (e.g. Ethernet)

6. Next Generation SDH/SONET

Carrier choices


- Invest in a new parallel data-centric network infrastructure?
- ...or maximize reuse of existing SDH/SONET networks
 - Tried and tested
 - Excellent management features
 - Resilient design configurations (e.g. SNCP rings)
 - Reduce capital expenditure
 - Extending network's lifespan

6. Next Generation SDH/SONET


- Upgrade current systems with next-generation SDH/SONET (NG-SDH) solutions
 - Virtual Concatenation (ITU-T G.7043)
 - Link Capacity Adjustment Scheme (ITU-T G.7042)
 - Generic Framing Procedure (ITU-T G.7041)
- □ These upgrades only needed at source and destination terminal equipment of required service
 - Intermediate equipment do not need to be aware and can interoperate with upgraded equipment
 - Enables operater to make only partial network upgrades on as-needed basis

- □ Fixed and contiguous rates leads to waste of bandwidth
 - Example: Mapping 1 GbE (1 Gbit/s) to VC-4-16c payload of an STM-16c (2.5 Gbit/s) frame

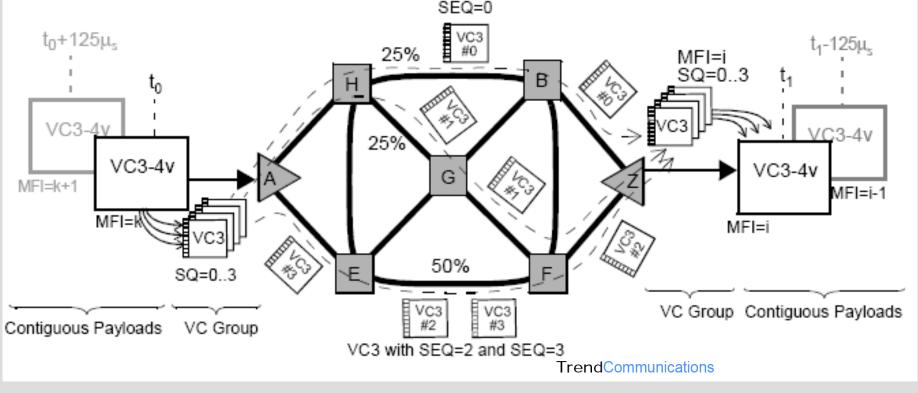
TKK Tietoliikennelaboratorio HUT Communications Laborato

- □ VCAT ⇒ improve bandwidth efficiency by fragmenting streams and placing in many smaller containers
 - Example: Mapping 1 GbE to payload of seven basic VC-4 containers

EMU/S-72.3340/MultiserviceNetworks/

TKK Tietoliikennelabors

- Low-order (LO) VCGs for low-speed applications e.g. network edges
- High-order (HO) VCGs for higher-speed applications e.g. core networks

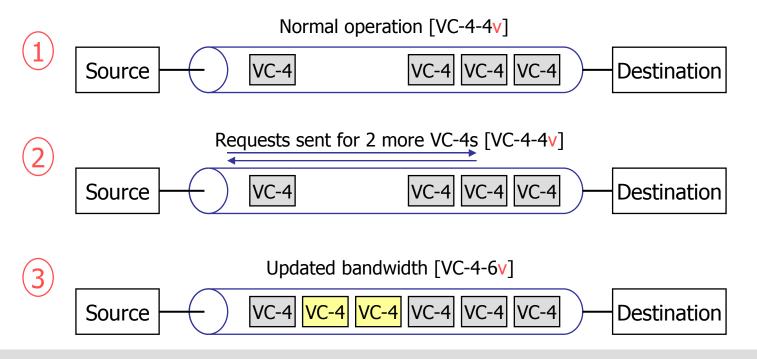

	SDH VCAT type	Component Signal	X range	Capacity (kb/s)	
	VC-11-Xv	VC-11	1 to 64	1600 to 102 400	e.g. X=16 for 25 Mbit/s ATM
LO VCG	VC-12-Xv	VC-12	1 to 64	2176 to 139 264	e.g. X=5 for 10 Mbit/s Ethernet
VCG	VC-2-Xv	VC-2	1 to 64	6784 to 434 176	
но	VC-3-Xv	VC-3	1 to 256	48 348 to 12.5 Gb/s	e.g. X=4 for 200 MB/s ESCON
HO VCG	VC-4-Xv	VC-4	1 to 256	149 760 to 38.3 Gb/s	e.g. X=7 for GbE

Source: IEEE Communications Magazine, Vol 44, No 5, May 2006.

March 2007

EMU/S-72.3340/MultiserviceNetworks/

- VCG members routed and transported independently over SDH network
 - VCG recombined at destination VCG receiver
 - If a link fails only a fraction of the VCG is lost


March 2007

EMU/S-72.3340/MultiserviceNetworks/

TKK Tietoliikennelaboratorio HUT Communications Laborat

6.2 Link Capacity Adjustment Scheme (LCAS)

- □ LCAS ⇒Enable increase and decrease VCG capacity on increments of member container bandwidths
 - Without affecting or taking down the entire VCG service (hitless)
 - Once a VCG is defined, the source and destination (sink) equipment are responsible for agreeing which members will carry traffic

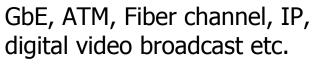
EMU/S-72.3340/MultiserviceNetworks/

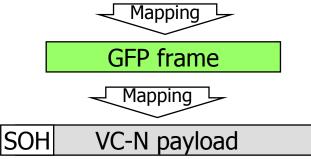
6.2 Link Capacity Adjustment Scheme (LCAS)

Capacity control is unidirectional

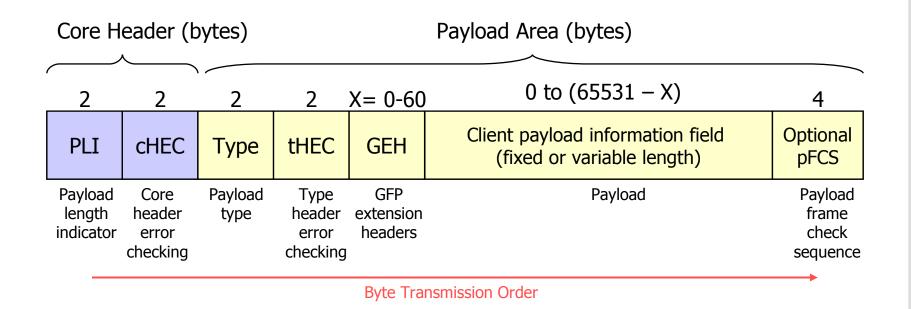
- Forward LCAS VCG capacity can differ to that of the reverse direction
- Both can change without coordination

Note that VCAT can be used without LCAS, but LCAS only possible with VCGs therefore requires VCAT

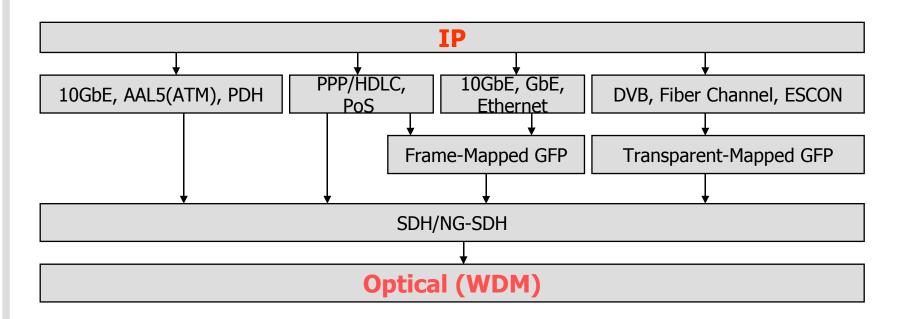

6.2 Link Capacity Adjustment Scheme (LCAS)


□ LCAS flexibility has several practical benefits

- Allows bandwidth-on-demand provisioning
 - Time-of-day demands
 - Special events
 - Pay-as-you-grow
 - Introducing new service granularities
- Enables removal of failed VCG members and eventual member reinstatement without affecting services
- Could be used to enhance other functions
 - Load-sharing
 - Congestion-avoidance
 - QoS differentiation


□ GFP provides mechanism for mapping packet and circuit-switched data traffic to SDH frames

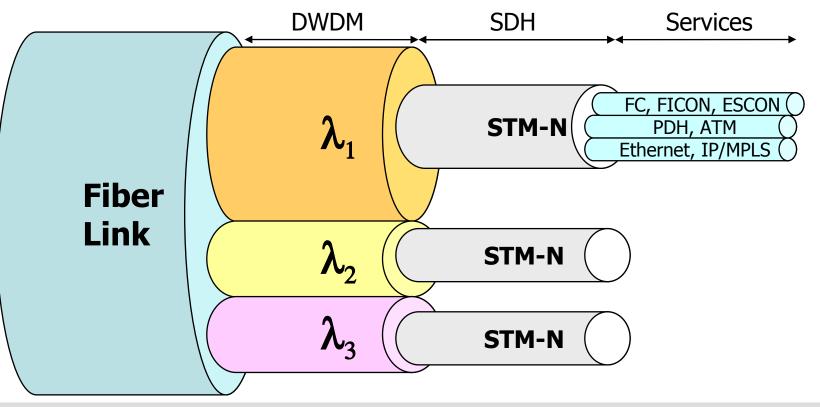
- Traffic mapped onto general purpose GFP frames
- GFP frames then mapped to SDH VCs
- Only needed at source and destination equipment


GFP defines different length frames and different client-specific frame types for payload and management

□ GFP specification allows 2 different transport modes

- The frame-mapped GFP (GFP-F): optimized for framing variable length packets (e.g. Ethernet, IP/MPLS)
 - Whole data frames mapped in its entirety
 - Variable GFP frame length depending on client packet or frame size
- The transparent-mapped GFP (GFP-T): optimized for services that require bandwidth efficiency and are delay sensitive (e.g. DVB)
 - Data mapped byte by byte
 - May span multiple GFP frames
 - Fixed length GFP frame

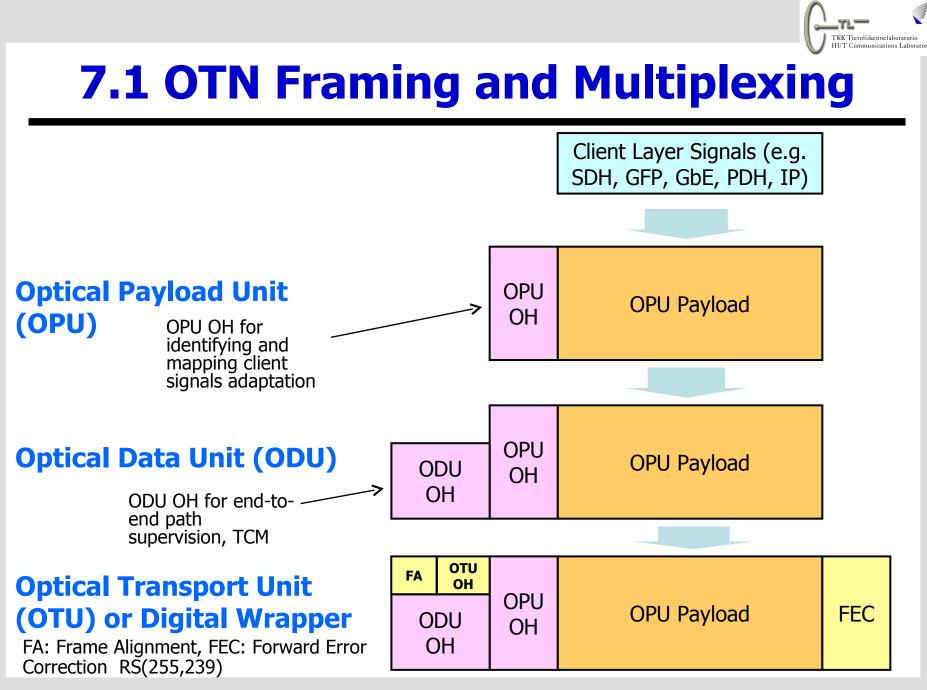
Example ways of transporting IP packets over optical (WDM) networks



IUT Communications Laborat

7. Optical Transport Network (OTN)

□ DWDM has significantly increased fiber capacity for SDH


- But also introduced new network elements (e.g. wavelength MUX/DEMUX) that require monitoring to ensure reliability
- SDH monitoring and management only available for SDH sublayers

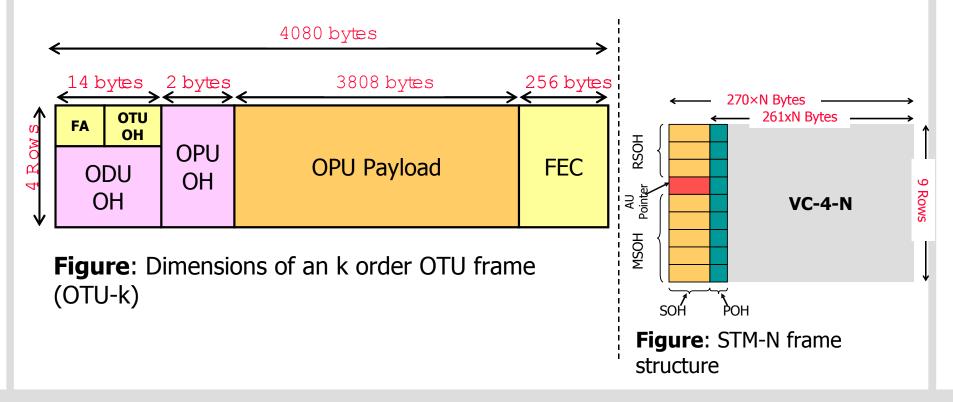
TKK Tietoliikennelaborator HUT Communications Lab

7. Optical Transport Network (OTN)

- □ OTN \Rightarrow a relatively new standard (ITU-T G.709, G.872)
 - Truly global standard unlike SDH/SONET
 - Enables SDH-like Operations, Administration, Maintenance and Provisioning for WDM networks
 - Reduces the requirement to run every service through SDH/SONET to benefit from the management features
 - More efficient multiplexing, provisioning, and switching of high-bandwidth (≥ 2.5 Gbit/s) services
 - Improved multivendor and inter-carrier interoperability
 - Forward error correction (FEC) from the beggining
 - Less complex than NG-SDH \Rightarrow easier to manage

March 2007

EMU/S-72.3340/MultiserviceNetworks/


Slide 55 of 67

7.1 OTN Framing and Multiplexing

OTU frame size is fixed but duration changes with order k where k=1, 2 or 3

In SDH, STM-N frame duration fixed (125 μs due to legacy 8 kHz digital voice sampling rate) but size varies with N



7.1 OTN Framing and Multiplexing

Table: Date rates and durations for standardized k order ODU and OTU frames

ODU-k	Data rate	<u>OTU-k</u>	Data rate	Order	Duration (us)
ODU-1	2.5 Gb/s	OTU-1	2.67 Gb/s	k=1	48.971
ODU-2	10 Gb/s	OTU-2	10.7 Gb/s	k=2	12.191
ODU-3	40 Gb/s	OTU-3	43 Gb/s	k=3	3.035

□ Low k order ODU frames interleaved to form higher order frames

7.1 OTN Framing and Multiplexing

□ Virtual concantenation also available for OTN

- Realized by concatenating OPUk frames into OPUk-Xv groups
- Enables very flexible support of line rates ≥ 2.5 Gbit/s
- Rates over 10 Tbit/s possible (OPU3-256v) for future!

OTN VCAT type	Component signal	X range	Capacity (kb/s)
OPU1-Xv	OPU1	1 to 256	2,488,320 to 637,009,920
OPU2-Xv	OPU2	1 to 256	~9,995,277 to ~2,558,709,902
OPU3-Xv	OPU3	1 to 256	~40,150,519 to ~10,278,532,946

TABLE 3. OTN component and VCAT signals.

Source: IEEE Communications Magazine, Vol 44, No 5, May 2006.

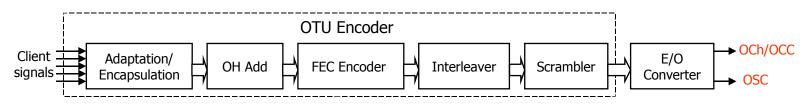
March 2007

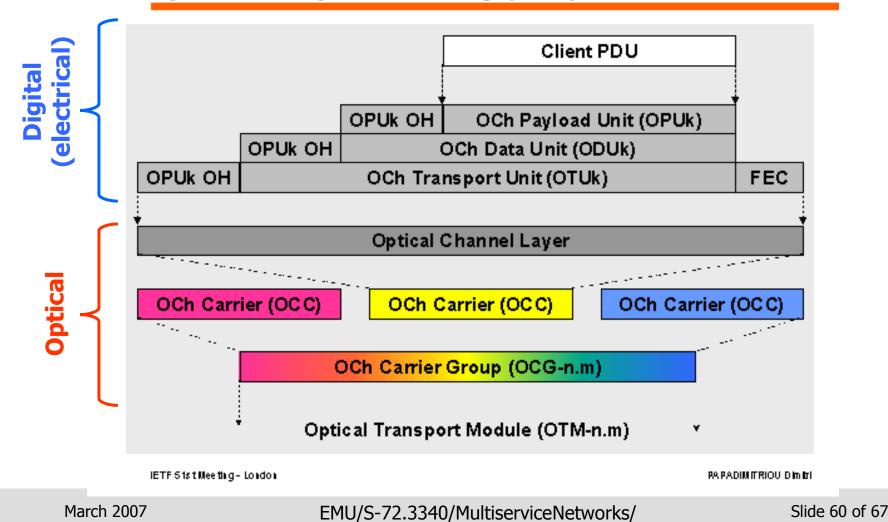
EMU/S-72.3340/MultiserviceNetworks/

7.2 Optical Channel (OCh)

□ OTU-k is an electric signal ⇒ converted to an optical channel (OCh) signal for fiber transmission

- OCh transports an OTU-k between electronic transponders in an OTN
- OCh overhead transported on an out-of-band wavelength channel ⇒ optical supervisory channel (OSC)




Figure: Block diagram of OTN transmitter

 n distinct OCh carriers (OCC) of bit rate index m can be multiplexed (using WDM) to form an OCC group (OCGn.m) to share a common fiber

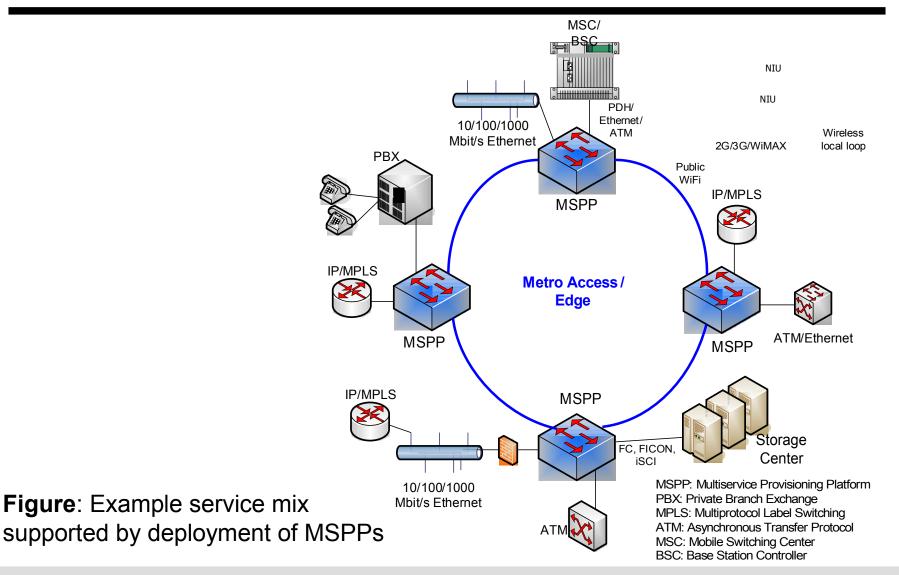
7.2 Optical Channel (OCh)

Optical Transport Hierarchy (OTH)

- Optical network operators now faced with a difficult choices to make among a multitude of standards
- How to build new networks or evolve existing network?
 - NG-SDH
 - Ethernet
 - OTN
 - IP/MPLS
 - CWDM or DWDM
 - etc.

□ Multiservice provisioning platform (MSPP)

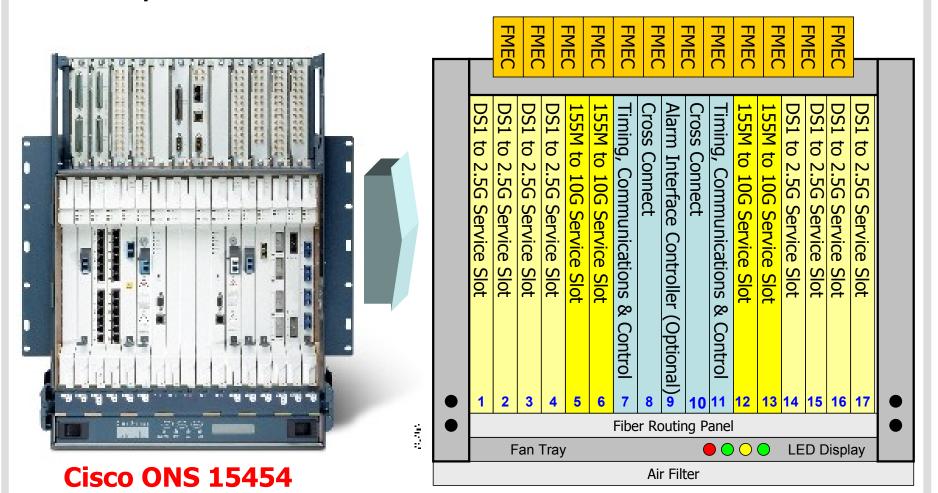
- Multiservice provisioning using NG-SDH features
- Diverse optical and electrical interfaces (GbE, SAN, IP, OTN etc.)
- Support for CWDM or DWDM transmission


Sonet/SDH Gigabit Ethernet Sonet/SDH Virtual Concatenation DWDM Sonet Link Capacity Adjustment Scheme (LCAS) MPLS IP Packet Ring (RPR or other) CVADM 10-Gigabit Ethernet 0% 20% 40% 60% 80% 100%

Source: Heavy Reading

EMU/S-72.3340/MultiserviceNetworks/

Major Technologies Used in MSPPs



March 2007

EMU/S-72.3340/MultiserviceNetworks/

□ Example MSPP: Cisco ONS 15454

March 2007

EMU/S-72.3340/MultiserviceNetworks/

Supported interfaces

Cisco ONS 15454

- Electrical (DS1, E1, E3, STM-1E etc.)
- SDH (up to STM-64)
- CWDM and DWDM (OTN)
- Ethernet (up to GbE)
- SAN (Fiber Channel and FICON)
- Video (D1 video, HDTV)

Cross-connection levels

DS1/E1 up to STM-64

Conclusions

□ This week

- Discussed various client layers (PDH, IP, SDH etc)
- Multiservice provision capabilities are crucial for operators
- OTN standards expected to play significant part in the future

Next lecture

WDM network elements, design, management etc.

Thank You!

March 2007

EMU/S-72.3340/MultiserviceNetworks/

Slide 67 of 67