

S-72.3340 Optical Networks Course Lecture 8: Test, Measurement and Simulation

Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9 451 2318, E-mail: edward.mutafungwa@tkk.fi

Lecture Outline

□ Part I: Test and Measurement

- Performance characterization of digital fiber-optic links
- Test and measurement cycle

□ Part II: Simulation

- Analytical modelling
- Link and network simulation tools

Part I: Test and Measurement

Optical communcation systems continuously evolving

- Keep up with capacity demand
- Extend reach of links
- Reduce CAPEX and OPEX
- Optical system testing and measurement have become more complex with the evolution
 - Test and measurement requirements were modest for initial systems
 - Current systems more intolerant to impairments ⇒ demand more rigorous testing

□ Significant developments in fiber-optic systems influencing test and measurement

- Multiwavelength operation (WDM transmission)
 - Before: single channel operation around 850 nm or 1300 nm
 - Now: CWDM or DWDM channels in 1260 nm-1625 nm range
- Increased line rates
 - Before: a few tens of Mbit/s
 - Now: rates up to 40 Gbit/s
- Deployment of optical amplifiers
 - Before: short links spanning a few km
 - Now: links up to a few thousand km

2. Characterization of Digital Links

2. Characterization of Digital Links

Impairments limit bit rate (information transfer efficiency) and distance (range)

2. Characterization of Digital Links

Link characterization important for operator

- Have precise knowledge of their network limitations
- How and where to localize faults or performance limitation points

Essential fiber link test and measurement routines

- Link loss testing
- Link dispersion testing

Optical loss testing

- Individual power meter and light source units or integrated optical loss test set (OLTS)
- Double-ended measurement requiring two technicians
- Single OLTS could used for component insertion loss (IL) measurement

TKK Tietoliikennelaboratorio HUT Communications Laboratory

2.1 Loss Testing

Optical time domain reflectometer (OTDR)

- Take snapshot of fiber span using backscattering and reflections
- Single-ended measurement by one technician
- Useful for troubleshooting/fault location

Figure: Example connector types

Figure: Example fusion splice

April 07

EMU/S-72.3340/TestMeasureSimulate/

Slide 11 of 67

□ OLTS advantages over OTDR

- More accurate
- Larger dynamic range \Rightarrow longer measurable link length
- Easily test through EDFAs with isolators
- Shorter testing time
 - Advantageous since for improved accuracy link needs to be measured from both ends and results averaged
 - Example: Single OTDR and OLTS loss measurements take about 3min and 30s respectively. Therefore, for a 120 fiber cable, OTDR measurements at both ends take at least 11hr longer.

Bending loss

- Fiber bends increase power leakage from core to cladding
 - Typically at splitting points, intra-office distribution frames etc.
- Restrictions on minimum bending radius
- More significant beyond 1600 nm
 - Some CWDM and L-band DWDM channels in that region
 - Rigorous loss testing at wavelengths beyond 1600 nm required

2.2 Dispersion Testing

- Dispersion testing necessary to ascertain fiber link limitations
 - Chromatic dispersion (CD)
 - Polarization mode dispersion (PMD)
- □ Need for dispersion testing
 - Dispersion of fibers need to be checked for compatibility with high rates
 - Transmitter linewidth must be carefully analyzed and controlled
 - Bandwidth response of various packaged optical modules needs to be optimized

2.2 Dispersion Testing

- Checking how dispersion parameters in field deviate from manufacturers specifications
- Environmental conditions (temperature, pressure, vibrations etc.) varies fiber's refractive index
 - Change location of zero chromatic dispersion wavelength
 - Typical variations for standard singlemode fibers
 - 0.025 nm/°C
 - 1.75 nm/%strain
 - -0.007 nm/MPa
 - More residue dispersion after dispersion compensation
 - Stress also changes fiber symmetry ⇒ increased PMD

2.2 Dispersion Testing

Figure: Example GUI screenshot of MTS-8000 CD tester

3. Performance Testing

Measure parameters that represent end-to-end link performance

- Eye opening penalty
- Bit-error-rate (BER)
- Q-factor
- Optical SNR (OSNR)

3.1 Eye Diagram Analysis

Eye diagram

- Produced by an oscilloscope
- Useful for troubleshooting various link problems

Figure: Fundamental eye (43 Gb/s NRZ) parameters.

3.2 BER Testing

- Use error counter or detector to compare signal at link's input and output to obtain BER
- □ Error counter needs to be familiar with the test bit pattern
 - Pseudo-random binary sequence (PRBS) as 2^N-1 patterns with all Nbit combinations, except all '0' bits
 - e.g. ITU-T 0.151 recommends N=31 for 2.5 to 40 Gb/s rates
 - Custom pattern
 - e.g. for SDH the N=23 PRBS test sequences (ITU-T 0.181) applied to payload bytes of an STM-N frame

3.2 BER Testing

BER testing also used to evaluate power penalty due to an impairments
Input Signal

3.2 BER Testing

How many errors do you need to count to get reliable BER measurement?

Example: 100 counted errors needed to estimate BER with 95% confidence level for a 2.5 Gbit/s link

- Total 10¹¹ bits (errored + unerrored) counted (40 s at 2.5 Gbit/s rate) for 10⁻⁹ BER estimation
- Total 10¹⁵ bits counted (11 hours) for 10⁻¹² BER estimation!!!

3.3 Block Errors

In-service (real-time) performance monitor might measure "errored blocks" instead of calculating BER

- Blocks in which one or more bits are in error
- Block is consecutive data bits monitored by an error detection code
- Example: SDH networks use bit interleaved parity (BIP) for in-service error monitoring
- Used to evaluate block error rate (BLER)
- Alternative error parameters employed (ITU-T G.826, G.828) e.g. errored second ratio

Errored Second Ratio =

One second periods with one or more errored blocks

Total seconds in measuring interval

3.3 Block Errors

□ Multiple bit errors in one block

- Still considered as a single errored block
- Places upper bound on detectable errors (maximum equivalent BER)

Maximum Equivalent BER =

Maximum number of errored blocks per second

Total number of bits per second

STM rate	Bits per Block	Maximum Equivalent BER
STM-1	19440	5,14 × 10 ⁻⁵
STM-4	77760	1,28 × 10 ⁻⁵
STM-16	311040	3,21 × 10 ⁻⁶
STM-64	1244160	8,04 × 10 ⁻⁷

Figure (b): Maximum equivalent BER at different STM rates for BIP-8 error monitoring.

Measurement of Q-factor based on method of shifting decision threshold levels (ITU-T 0.201)

- Measure BER at different threshold settings
- Convert measured BER to Q-factor

□ Fast measurements by only taking decision threshold levels corresponding to BERs of 10⁻⁴ to 10⁻⁸

BER	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁴	10 -15
2.5 Gb/s	0.004 ms	0.04 s	11 hr	6 days
10 Gb/s	0.001 ms	0.01 s	3 hr	8 hr

Table: Time to record certain BERs atdifferent bit rates.

- Convert BER versus threshold results into Q-factor versus threshold plot
- □ Curve fitting to reach an intersection point ⇒ optimum threshold and Q-factor point
- □ Minimum BER obtained from optimum Q-factor

Figure: BER measurement and extrapolation

Figure: Screenshot MTS-8000 Q-factor meter

EMU/S-72.3340/TestMeasureSimulate/

April 07

3.5 Optical Signal to Noise Ratio

- \Box Links with optical amplifiers \Rightarrow ASE beat noise is dominant
- □ Optical signal to noise ratio (OSNR) a useful performance parameter
 - □ ASE accumulation along amplifier chain lowers the OSNR
 - □ OSNR listed as an interface parameter in various standards
 - □ ITU-T G.692 (amplified WDM systems) and G.959.1 (OTN physical layer)

Figure : ASE accumulation and OSNR reduction in an amplified transmission system

3.5 Optical Signal to Noise Ratio

□ OSNR measured using optical spectrum analyzer (OSA)

- Method outlined in IEC 61280-2-9
- ASE Noise power hidden by signal so obtained by interpolation ITU grid spacing

3.5 Optical Signal to Noise Ratio

Figure: Example GUI screenshot of MTS-8000 tester OSA

3.6 Jitter Performance Measures

□ Jitter leads to horizontal eye closing

- □ Successive bit periods might have slightly different durations
- ❑ Sampling not at maximum eye opening due to clock mis-timing ⇒ worse BER

3.6 Jitter Performance Measures

- Using dedicated jitter test and analysis tools
 - □ ITU-T compliant (e.g. 0.172 rec. for SDH test equipment)
 - Inbuilt pattern and jitter sources, clock recovery
 - Inbuilt custom peak-to-peak and RMS jitter detectors
 - Real-time accumulation and display of jitter statistics

• etc.

Figure (a): Jitter tolerance measurement

Figure (b): Jitter transfer measurement

rigule (c). Sitter output measure

3.7 Protocol Testing

- Networks made of a variety of software and hardware components
- Expected to perform based on particular standards or protocols
- □ Testing needed to ensure conformance

3.7 Protocol Testing

Example: Acterna ANT-20 Advanced Network Tester

□ Testing various SDH functions

- Test for correct path switching and configuration
- Editing and analyzing section and path overhead
- Alarms and responses
- Synchronization tests
- Jitter tests
- Pointer simulation and analysis
- BER performance tests
- Testing mapping of PDH and ATM traffic to SDH frames
- ...and many more

3.7 Protocol Testing

□ As an example one possible test is to ensure that switching time for network recovery is within 50 ms SDH limit

4. Test and Measurement Cycle

- T&M duration should be compatible with service provider's commitments
 - Project postponements or turn-up delays
 - Reduce delays in service provision
 - Avoid unacceptably long repair times

4. Test and Measurement Cycle

- \Box Links span long distances \Rightarrow few to thousands km
- T&M equipment should be easily available on a wider scale in many test locations
 - Portable/lightweight
 - Cost-effective and durable
 - Integrated/multifunctional test sets
 - Reduced learning curve and user-friendly e.g. GUI
- Capability of repeated link T&M is important
 - For ongoing network maintenance
 - For network upgrade operations

4. Test and Measurement Cycle

HUT Communications Laborator

□ Example: Acterna MTS-8000 Tester

4.1 Link T&M Before Commercial Launch

- □ Spot manufacturing problems
- □ Spot shipping problems
- □ Verification of end nodes and intermediate equipment
 - Verify that power levels at interfaces in line with specifications
 - Verify transmitter wavelengths in line with specifications
- □ Characterization of fiber plant
 - Loss testing
 - Dispersion testing
- □ Check alarms generated match listed fault conditions

4.2 Link T&M During Operation

Real-time T&M for remote link monitoring and maintenance operations during normal operation

- Maintenance and troubleshooting
- Signal health-assessment
- Initiate service restoration actions e.g. protection switching
- Dynamic control of components e.g. EDFA gain control, power equalizers

4.2 Link T&M During Operation

EMU/S-72.3340/TestMeasureSimulate/

Slide 41 of 67

4.2 Link T&M During Operation

April 07

2004)

4.2 Link T&M for Before Upgrades

- □ Various WDM link capacity upgrade scenarios
- Example: Doubling DWDM channel number by halving spacing
 - Fiber characterization ⇒ nonlinearity (four wave mixing, cross-phase modulation)
 - Component characterization ⇒ crosstalk level, spectral response, PDL, wavelength drifts, wavelength misalignments

Part II: Simulation

Network demand forecasting, planning, engineering and deployment is a continuous process

Various network planning and design tools required

- Design complexity scales with network size and traffic
 - Longer distances \Rightarrow more amplifiers, switches etc.
 - Faster line rates
 - Many wavelength channels (10s of wavelengths)

Methodologies for studying system behavior

2. System Modeling

Physical modeling

- Lab experiments, tests and measurements
 - System parts
 - Scaled down version of a system

Example: Spectrum-slicing noise reduction using a semiconductor optical amplifier experiment (Uni. Of Limerick)

2. System Modeling

□ Physical modeling disadvantages

- Requires sufficient and skilled manpower
- High upfront investment in test and measurement equipment and network devices
 - Limited budget \Rightarrow limited experiments

Extensive analytical modeling and simulation recommended before physical modeling

3. Analytical Modeling

□ Analytical modeling of optical devices and systems

- Mathematical models used to represent optical link devices and impairments
 - Conviniently solved by mathematical packages (Mathcad, Mathematica, Maple, Maxima etc.)
 - Programs in standard languages (Matlab, C/C++, Fortran, Pascal, Java, Python etc.)

Good accuracy for well developed models

3.1 Example Analytical Modeling

- Propagation of optical pulse over fiber modeled by the nonlinear Schrödinger equation (NLSE)
 - Maxwell's equations in cylindrical coordinates and with boundary conditions of fiber optic cables
 - Equation also applicable in other areas (e.g. water wave theory)
 - Some terms ignored for pulses >10ps (<100 Gbit/s NRZ)
 - NLSE does not have general analytical solution in presence of both dispersion and nonlinearities

Pulse shape or envelope

TKK Tietoliikennelaboratorio HUT Communications Laboratory

3.1 Example Analytical Modeling

- Various numerical methods used for solving NLSE
- Split step method most popular
 - Various fiber effects assummed to be independent over length Δz
 - The smaller is Δz the more is accurate is the solution
 - Small steps means (more iterations) longer computation times
 - Optimum step-size selection is crucial

4. Link Simulation Tools

- □ Simulation of various devices and systems
- □ Integrated computer-based tools or packages
- □ For optical link design
 - Simulate or imitate both electrical (e.g. FEC encoders) and optical (lasers, optical amplifiers etc.) components

4.1 Advantages of Simulation

□ Advantages of simulation

- Large library of components ⇒ no need to "reinvent the wheel"
- Avoid errors from guesswork or back-of-the-envelope computations
- Time efficient
 - Engineers produce designs quickly (less man hours)
 - Deployment deadlines are met
- Optimized to run fast on computers unlike own creations
- Cheaper for analyzing different scenarios than lab experiments
- Convenient documentation and reporting features
 - For reporting of solutions and sharing results in a design team

TKK Tietoliikennelaboratorio HUT Communications Laboratory

4.2 Simulink

April 07

4.2 Simulink

Custom-made Simulink optical simulators

Limited component libraries

4.3 Commercial Simulation Packages

Optical physical layer design tools in the market

April 07

April 07

EMU/S-72.3340/TestMeasureSimulate/

Slide 60 of 67

□ VPI player is a stripped down version of VPI transmissionMaker

- Plays simulations (saved as .dds files) that are designed in VPItransmissionMaker simulation environment
- Produces same results as those obtained when simulations are run VPItransmissionMaker
- Almost same GUI appearance as VPItransmissionMaker
- Cannot edit the simulations
- Unlike VPItransmissionMaker, it is free!
- View demos at directory X:\Program Files\VPI\VPIplayer
 7.0\demos (dynamicDataSheets)
 - X is the drive where you installed the VPIplayer

A few select parameters can be adjusted using sliders to observe different results

5. Optical Network Design Tools

- □ What fiber layout to use?
- How many fiber strands required?
- What equipment required at each node site?
- Any intermediate repeaters/regenerators required?
- How is traffic routed between different source and destination nodes?
- Which protection scheme is suited to proposed layout?
- How do we migrate network from ring to mesh topology?
- Cost implications of different designs?

*Ref: R. Sabella et al, Journal of lightwave Technology, Vol. 16, No. 11, Nov. 1998

5.1 Commercial Design Tools: Example 1

TKK Tietoliikennelaboratorio HUT Communications Laboratory

5.1 Commercial Design Tools: Example 1

Reporting generated by MetroWAND tool

sol_summary - Repor	rt				
e Edit Reports					
j 🖻 🎒 🛤					
onet Ring Type	No.Sys	No.ADMs	No.Regens	Total Cost	Design Gr
-Fiber Bi	3	11	0	1,320,000	Full Spectrum Photor
-Fiber Bi	0	0	0	0	Network Design Auto
-Fiber Uni	1	3	3	261,000	
otals	4	14	3	1,581,000	
Sonet Term.Type	No.Sys	No. TMs	No.Regens	Total Cost	
	=====	======	========		
	2	4	0	240,000	Solution Summary
					Cost Equipment SONET Costs DWDM Costs Fiber Costs Cross-connect Costs
Jo Planned Rings Jo Potential Rin	were inpu	ut			Total Cost: 5,779,000.00
ccess Device Co	unts and (Cost Follow			
Device Nam	e No	o. Devices	Device Cost		FIBER - 66
					SONET - 2
		0	0		MSPP - 0.0
OC3access					
OC3access OC12access		16	112,000		
OC3access OC12access 1 GbEaccess		16 4	112,000 40,000		
OC3access OC12access 1 GbEaccess OC192access		16 4 9	112,000 40,000 108,000		
OC3access OC12access 1 GbEaccess OC192access OC48access		16 4 9 9	112,000 40,000 108,000 90,000		
OC3access OC12access 1 GbEaccess OC192access OC48access		16 4 9 9	112,000 40,000 108,000 90,000		

EMU/S-72.3340/TestMeasureSimulate/

FKK Tietoliikennelaboratorio HUT Communications Laborato

6. Conclusions

Part I

- Test and measurement crucial for increasingly complex optical networks
- More channels, faster line rates means more impairments need to be measured and monitored in the field

Part II

- Role of analytical modeling
- Link simulation tools
- Network design tools

Thank You!

