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1. Introduction

Aspects of optical transmission system engineering
Selection of the right fibers, transmitters, amplifiers etc.
Deals with various impairments or performance 
degradations

• How to allocate margins (a preventive measure) for each 
impairment

• How  to reduce the effect of the impairments

Analyze tradeoffs between the different design 
parameters

Target is to ensure reliable transport of information
Low BER, high Q-factor etc.
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2. Link Design

Simple fiber-optic communications link 
Short distance
Low bit rate
Point-to-point

Major concern is to ensure sufficient received 
optical signal power

Link power budget analysis

Fiber
ReceiverReceiverTransmitterTransmitter



March 2007 EMU/S-72.3340/TransSysEng/ Slide 5 of 83

2.1 Link Power Budget

Fiber
ReceiverTransmitter

Item Value dB value

1a) Average output power

2a) Propagation losses (10 km)

Receiver:
3a) Signal power at receiver
3b) Receiver sensitivity

Link Margin (Power Margin)

Transmitter:

Channel:

1.0 mW

0.2 dB/km

= (3a – 3b)

0.0 dBm

-20.0 dB

-20.0 dBm
-30.0 dBm

+10.0 dB
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2.1 Link Power Budget
A typical amplified WDM link includes:

Optical transmitters and receivers (1 each per wavelength) 
Wavelength multiplexer and demultiplexers
Optical amplifiers

• Boost amplifier: to increase the output power 
• Line amplifier: to compensate for fiber losses
• Preamplifier: to improve receiver sensitivity



March 2007 EMU/S-72.3340/TransSysEng/ Slide 7 of 83

2.1 Link Power Budget
A power budget for an amplified WDM link more detailed
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2.2 Detailed Link Design

In an amplified WDM link there is more to worry 
about than just the power budget

Other signal impairment effects have to be 
considered
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2.2 Detailed Link Design

Figure: Impairments in a simple digital fiber-optic communication link. 
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Each impairment results in a power penalty
The required increase in received signal power (in dB) to 
maintain a required BER performance in presence of an 
impairment 
Reduction in electrical signal-to-noise ratio (Q-factor) 
attributed to a specific impairment

Design of a link affected by multiple impairments 
requires a power penalty analysis

2.3 Power Penalty Analysis
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2.3 Power Penalty Analysis

Received optical power (dBm)
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2.3 Power Penalty Analysis

Recall:

( )
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2.3 Power Penalty Analysis

( )

( )

1 0

1 0

1 0

1 0

´ ´
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10 log

R P P

PP
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Power penalty (PP) ⇒ ratio of the arguments of the Q(⋅) 
for the two cases (with and without impairments)

with impairments

without 
impairments



March 2007 EMU/S-72.3340/TransSysEng/ Slide 14 of 83

2.3 Power Penalty Analysis

Ideal transmission system 
No impairments 
Then example:  BER = 10-12 ⇨  Q-factor=17 dB

Practical transmission system 
Impairments exist (e.g. dispersion, imperfect devices) ⇒
cause power penalties
Each penalty calculated assuming rest of system is ideal
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2.3 Power Penalty Analysis
Each impairment assigned its own PP
This is an approximate design method because some 
impairments are related to each other

Impairment Allocation (dB) 
Ideal Q-factor 17 
  
Transmitter 1 
Crosstalk 1 
Dispersion 2 
Nonlinearities 1 
Polarization dependent losses  3 
Component ageing 3 
System margin 3 
Required Q-factor 31 
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System design parameters related to transmitters 
include: 

Output power (usually 1-10 mW)
Side-mode suppression ratio
Modulation type 
Relative intensity noise (RIN)
Wavelength stability and accuracy

• Example: DFB lasers have a 0.1 nm/°C temperature coefficient
• Laser output wavelength may also drift due to ageing effects
• Advanced lasers are packaged devices for monitoring and 

adjusting temperature and wavelength

3. Transmitter
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Extinction ratio r

• Ideally it is assumed that P1 > 0 and P0 = 0 giving r  = ∞
• In practice r is between 10 and 20 (ITU recommends ≥ 12 dB)
• Reducing extinction ratio reduces power difference between “1” 

and “0” levels
• Produces a power penalty relative to ideal system (r = ∞)

3. Transmitters

r =
P0 Power to transmit “0”

P1 Power to transmit “1”
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3. Transmitters

ITU

Source: MAXIM APPLICATION NOTE 596HFAN-02.2.0: “Extinction Ratio and Power Penalty,” 2001.



March 2007 EMU/S-72.3340/TransSysEng/ Slide 19 of 83

Key systems parameters associated with a receiver 
are:

Receiver sensitivity ⇒ required mean received optical 
power to achieve a certain BER
Overload parameter ⇒ maximum acceptable receiver 
input power 

4. Receivers
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4. Receivers
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Most common is erbium-doped fiber amplifier
(EDFA) operating C-band (1530-1565 nm)

L-band EDFAs (1565-1625 nm) amplifiers used today to 
increase bandwidth
Raman amplifiers compliment EDFAs in long haul links

5. Optical Amplifiers
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EDFAs have several major imperfections:
Produce ASE noise in addition to providing gain
Gain not flat over entire transmission window
Gain depends on the total input power

5. Optical Amplifiers

G

Preamplifier

P ASE NoiseP⋅G
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There is a limit on the output power of an EDFA
Gain saturation ⇒ depends on pump power and amplifier design
EDFAs also operate in saturation but designer should be aware that 
gain is less

Fig: Gain characteristics of an EDFA 
with Gmax = 30dB and Psat = 10 dBm

Unsaturated 
region

Saturated 
region

5.1 Gain Saturation
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EDFA gain spectrum is not flat particularly in lower 
part of C-band window

Figure: EDFA gain for different pump powers. 

5.2 Gain Equalization
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Effects of non-flat gain spectrum become more 
significant for cascaded EDFAs

5.2 Gain Equalization

Figure: Gain windows for 1 EDFA and a cascade of 13 EDFAs. 
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5.2 Gain Equalization

Other EDFA gain equalization methods
Pre-equalization or pre-emphasis

• Channels that see lower gain are launched with higher power 
(see next slide)

• Amount of equalization that can be done is limited
• Only suitable for point-to-point links 

Equalizers introduced after each amplifier stage (see next 
slide)

1. Demultiplex and attenuate channels ⇒ Cumbersome, inflexible
2. Tunable multichannel filters ⇒ Extra powering needed for 

control
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5.2 Gain Equalization
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5.2 Gain Equalization

Preferred EDFA gain equalization method ⇨ use 
shaping optical filter within the EDFA

Flatness over a wide wavelength range
Loss introduced by filter reduces power output and 
increased noise figure
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5.3 Amplifier Cascades

Longer fiber links would require several 
amplification stages to maintain signal power

Cascaded amplifiers
Gain of amplifier to compensate for loss of preceding 
fiber stage

G

1 2 3

l
G G

L/l

G

L

l
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5.3 Amplifier Cascades

Optical signal to noise ratio (OSNR) a useful 
performance parameter

Accumulation of ASE noise ⇒ reduced OSNR

Figure : ASE accumulation and OSNR reduction in an amplified transmission system
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Ideally minimum ASE noise power when amplifier 
cascade has perfectly distributed gain ⇒ G = 1

Power penalty for using lumped amplifiers (G > 1) 
instead of ideal distributed gain amplifier

• Example: PPlumped = 0 dB for G = 1
• Example: PPlumped = 13.3 dB for G = 20 dB, PPlumped = 5.9 dB for 

G = 10 dB

Reducing gain (amplifier spacing) ⇨reduces PPlumped
But increases costs ⇒ More amplifiers huts required

G
GPP
ln

1
lumped

−
=

5.4 Amplifier Spacing Penalty
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5.4 Amplifier Spacing Penalty
When distributed amplification is used

Continuous amplification as signal propagates along fiber
Reduces need to increase EDFAs and minimizes ASE
Example: EDFAs assisted by Raman amplification
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5.5 Power Transients and AGC

Important to consider in WDM systems with EDFA 
cascades

If some channels fail or are OFF ⇒ Surviving channels 
see more gain and arrive with higher power at receiver 
Setting up or taking down new channel(s) affect power 
levels on existing channels
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5.5 Power Transients and AGC
Automatic gain control
(AGC)
Maintain EDFA output 
power

Tapping and monitoring 
input and/or output
Vary pump power 

Figure: Power pump adjustment to maintain EDFA output 
power in a 4-channel WDM system
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6. Crosstalk

Interference between channels in WDM systems
Introduced by signal leakages from various components
Interchannel crosstalk ⇒ crosstalk and desired signal 
have different wavelengths
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6. Crosstalk
Intrachannel crosstalk ⇒ crosstalk and desired signal 
have similar wavelengths
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6.1 Worst Case Crosstalk
Analysis of crosstalk PP dependant on polarization
(orientation) and phase of interfering signals

Light waves in singlemode fibers are linearly polarized
Projected on to 2 equal orthogonal components (X and Y) or 
principal states of polarization (SOP)

Linear polarization Circular polarization Elliptical polarization
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6.1 Worst Case Crosstalk

Typical worst case analytical assumptions ⇒ give 
higher PPcrosstalk than that experienced in practice

Interfering signals have equal SOP (co-polarized) and 
exactly out of phase
In practice SOP and phase relationships are not fixed and 
tend to vary with time e.g. due to temperature variations



March 2007 EMU/S-72.3340/TransSysEng/ Slide 39 of 83

6.1 Worst Case Crosstalk
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6.2 Crosstalk PP
PPcrosstalk increases with the power ratio or crosstalk level ε

Aggregate ε increases with N the number of interfering 
signals

ε = average desired signal power
average crosstalk signal power

0 ≤ ε ≤ 1

∑
=

=
N

i
i

1
εε Intrachannel crosstalk

∑
=

=
N

i
i

1
εε Interchannel crosstalk
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PP due to intrachannel
crosstalk more severe

Example: In plot below to 
ensure PPcrosstalk ≤ 1 dB, for 
interchannel crosstalk εdB ≤ -10 
dB and for intrachannel
crosstalk εdB ≤ -30 dB
Devices with much high 
crosstalk isolation required for 
higher εdB

6.2 Crosstalk PP

Figure. Estimated power penalty due 
to 10 interfering channels for both 
intra- and interchannel crosstalk cases
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6.3 Crosstalk in Networks
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6.3 Crosstalk in Networks
Signal propagates through multiple network nodes (hops)

Accumulates crosstalk from different devices in each node
Limits hop number before electrical regeneration becomes necessary

Add Drop Add Drop Add Drop

Node Node Node

Source Destination 

= demultiplexer = space switch= multiplexer = fiber link

Source Node Intermediate Nodes Destination Node

1st Hop 2nd Hop 3rd Hop 4th Hop 5th Hop
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6.4 Bidirectional Systems
Data transmitted in both directions over a common fiber

Physically this is possible

However, intrachannel crosstalk may arise due to back-reflections
Reflections from within end equipment can be carefully controlled
More difficult to restrict reflections from fiber link itself

Therefore bidirectional systems always use different 
wavelengths in either direction ⇒ interchannel crosstalk

A B
λi

λi

A B
λj

λi
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6.5 Crosstalk Reduction

Improvement of crosstalk isolation devices
More careful designs producing devices with higher 
crosstalk isolation
Disadvantages: Lower yields and costly devices
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6.5 Crosstalk Reduction
Using architectural approaches to reduce crosstalk

• Example: wavelength dilation by di-interleaving and interleaving 
doubles channel spacing
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6.6 Cascaded Filters
Filter cascades

Passband gets narrower with 
increased cascaded 
components
Increased wavelength 
stability and accuracy 
requirements

Center wavelength 
misalignments

Added signal loss 
Increased interchannel
crosstalk
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7. Dispersion

Dispersion ⇨ different components of a common 
data signal travel with different velocities
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7.1 Chromatic Dispersion
Most prominent dispersion is chromatic dispersion

Different frequency (wavelength) components of a signal travel with 
different velocities in fiber
Chromatic dispersion coefficient D in ps/nm-km

• ps is the time spread of the pulse, nm is spectral width of the pulse 
andkm corresponds to link length

Typical D value for standard singlemode fiber (SMF) in C-band (1550 
nm window) is D = 17 ps/nm-km and 1300 nm is D = 0 ps/nm-km 
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7.2 Chromatic Dispersion Limitations

Fiber

L

( )
0

T D LB
T

λ∆
= ∆

where D is dispersion coefficient, L is link length, B is the bit rate, ∆λ is 
the spectral width of pulse
Recommendation for tolerable ∆T/T values specified by various 
standards (e.g. ITU-T G.957, Telcordia GR-253)
Example 1: PPchromatic ≤ 1 dB ⇒ ∆T/T=0.306 
Example 2: PPchromatic ≤ 2 dB ⇒ ∆T/T=0.491



March 2007 EMU/S-72.3340/TransSysEng/ Slide 51 of 83

7.2 Chromatic Dispersion Limitations

Assuming λ= 1550 nm, ∆λ = 1 nm and D = 17 
ps/nm-km 

A PPchromatic < 2 dB limit (∆T/T=0.491) yields a 
condition B·L < 30 (Gb/s)-km

• If B = 1 Gb/s, L ≤ 30 km
• If B = 10 Gb/s, L ≤ 3 km 
• If B = 40 Gb/s, L ≤ 750 m

There is a clear need for measures to reduce 
dispersion penalties!
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7.2 Chromatic Dispersion Limitations

Improve transmitter design to reduce dispersion penalties
Narrow spectral linewidth signal sources (e.g. SLM lasers)

External modulation to recude wavelength components introduced by 
chirping

Dispersion compensation required if spectral linewidth still not narrow 
enough
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7.3 Chromatic Dispersion Compensation

Electrical dispersion compensation or penalty 
reduction techniques 

Equalizers or filters to remove ISI
Forward error correction

Optical-based chromatic dispersion compensation
Dispersion compensating fibers
Chirped fiber Bragg gratings
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Dispersion compensating fibers (DCF) provide negative dispersion
(around -100 ps/nm-km) in the 1550 nm transmission window

DCF adds loss to the system power budget⇒ need higher gain from 
amplifiers

where DSMF and DDCF are the dispersion coefficient of the SMF and DCF fibres

DCF

SMFSMF
DCF D

DLL
−

⋅
=

DCFDCFSMFSMF LLG αα ⋅+⋅=

7.3 Chromatic Dispersion Compensation

G
SMF DCF

LSMF LDCF

Accumulated 
dispersion   

+D -D
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DCFs could be deployed in different configurations

Figure: Eye diagrams for different compensation configurations for transmission of 10 Gb/s NRZ data 
signals over 240 km SMF link. Top for low fiber nonlinearity, bottom for excessive nonlinearities.
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7.3 Chromatic Dispersion Compensation
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7.3 Chromatic Dispersion Compensation

Dispersion slope
Dispersion varies with λ
Unequal compensation with 
uniform dispersion 
compensation

Need for dispersion slope 
compensation 

To compensate for residue 
dispersion
Critical ≥ 40 Gbit/s

λ
λ1 λ2 λ3 λ4

DSMF(λ)

SMF DCF

D
ac

c

L

Different accumulated
dispersion.

Residual 
dispersion
after DCF.



March 2007 EMU/S-72.3340/TransSysEng/ Slide 57 of 83

7.3 Chromatic Dispersion Compensation

Chirped fiber Bragg gratings
Period of gratings varies linearly with position
Reflects different wavelengths at different points along 
its length ⇒ different delays at different wavelengths

Input

Output

Chirped Bragg grating

Higher wavelengths

lower wavelengths

Uniform 
grating
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7.3 Chromatic Dispersion Compensation

Different chirped fiber Bragg gratings necessary to 
simultaneously compensate dispersion for different 
wavelengths 

Input

Output

λ1 λ2
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7.4 Polarization Mode Dispersion

If a singlemode fiber is perfectly cylindrical
A signals two orthogonal polarization components travel 
at same speed

In practice deployed fibers not perfectly cylindrical 
⇒ leads to polarization mode dispersion (PMD)

Different polarization components travel with different 
velocities

x

y
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7.4 Polarization Mode Dispersion

Possible causes:
•Fiber manufacturing process 
•Laying the fiber into the ground
•Spooling fiber for shipping
•Indoor cabling 
•Temperature variations
•Nearby vibrations 

Noncircular core:

Mechanical stress:

Bending:

Torsion:
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7.5 PMD Power Penalty

Differential group delay (DGD) ∆τ between the 2 
polarization components due to PMD 

Longer DGD ⇒ higher PMD power penalty (PPPMD)

∆τ
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er

time
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er

time
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7.5 PMD Power Penalty

State of polarization varies slowly with time 
DGD not constant ⇒ a Maxwellian random variable
PPPMD also time varying

PMDD Lτ∆ =

where DPMD is the fiber’s PMD coefficient [in ps/(km)0.5]



March 2007 EMU/S-72.3340/TransSysEng/ Slide 63 of 83

7.5 PMD Power Penalty

Figure: Distance and bit rate limits due to various dispersion 
mechanisms. D = 17 ps/nm-km and DPMD = 0.5 ps/(km)0.5
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7.6 PMD Compensation
ITU G.691 ⇒ when <∆τ>/T < 0.3 then PPPMD≤1 dB

Example distance limitation for different fibers shown below
Need for PMD compensation!

B (Gbit/s) Distance (km) limit for 
new very low PMD fiber
DPMD = 0.02 ps/(km)0.5

Distance (km) limit for 
legacy fiber
DPMD = 1 ps/(km)0.5

2.5 4 × 106 1600

10 2.5 × 105 100

40 16,000 6.25
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7.6 PMD Compensation
PMD difficult to compensate due to its time-varying nature

Transmitted pulses separated into polarization components
The “fast” component is delayed to compensate for DGD
A feedback from detected signal is required to track PMD changes
One compensator needed for each wavelength channel since PMD 
also wavelength dependant 
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7.7 Polarization Dependant Losses

Components may have a polarization dependent 
loss (PDL)

Signal experiences different insertion loss (e.g. through 
isolator) depending on its state of polarization
Many such components on transmission path ⇒ PDL 
adds up in an unpredictable way
PDL may also vary with wavelength!
Careful design to maintain acceptable power budget
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8. Fiber Nonlinearities

If optical signal power is low, fiber considered to be 
linear medium

Increase optical transmit power overcomes power 
penalties and BER improves

But… if power increased beyond certain level
Fiber links exhibit nonlinear effects
Degrade signal by distortion and crosstalk
Longer the link length the more the nonlinear 
interactions
Nonlinear effects of fibers place serious limitations on 
system design
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8. Fiber Nonlinearities
Main causes of fiber nonlinearity

Scattering effects
Refractive index variation (Kerr effects)

All effects except SPM and CPM provide gain to some channels at the 
expense of depleting power from some other channels
SPM/CPM affects only phase & causes spectral broadening ⇨ dispersion
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8.2 Stimulated Brillouin Scattering
Stimulated Brillouin scattering (SBS)

Distorts signal by producing backwards gain towards source
A signal produced in opposite direction with backscattered power

Figure. The dependence of transmitted 
and backscattered power on input 
signal power. Note that SBS threshold is 
when transmitted and backscattered 
powers are equal.  
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8.2 Stimulated Brillouin Scattering

Possible SBS remedies
Keep signal power below SBS threshold power ⇨ reduce 
amplifier spacing
Interaction low if source spectral width < 20MHz SBS 
gain bandwidth

• Increase spectral width of source (>20 MHz) but keep in mind 
chromatic dispersion!

Use phase modulation schemes instead of amplitude or 
intensity modulation schemes
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8.3 Stimulated Raman Scattering
Stimulated Raman scattering (SRS)

Power transfer from lower to higher wavelength channels
Coupling occurs in both directions of propagation
Raman gain dependent on wavelength spacing (∆λs)
Same effect used for fiber Raman amplifiers! 

λ2 λ3 λ4λ1 λ2 λ3 λ4λ1Fiber

Figure: Signal distortion due to SRS

λ2 λ3 λ4λ1 λ2 λ3 λ4λ1Fiber
λpump

λpump

Figure: Fiber Raman amplification using SRS
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8.3 Stimulated Raman Scattering
Possible remedies

Keep channels spaced as far as possible
Keep signal power level below a certain SRS threshold
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Four-wave mixing (FWM)
Signals at frequencies fi , fj and fk interact 
Produce crosstalk components or intermodulation products at 
frequency

  ,   where, kjiffff kjiijk ≠−+=

8.4 Four-Wave Mixing 

out-of-band FWM products

f1 f2 f3

f4 f5 f6 f7

215 ff2f −=

Example:
FWM products at f5:

and3215 ffff −+=
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8.4 Four-Wave Mixing 

FWM efficiency is enhanced when 
Dispersion is very low ⇒ interacting signals have good 
phase relationship (worst case PPchromatic)
Transmit power is high
Channel spacing is narrow 
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8.4 Four-Wave Mixing 

Worse for dispersion shifted fibers (DSF)
Have zero dispersion point in 1550 nm window

Fig. Limitation on the maximum power per channel due to FWM  
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8.4 Four-Wave Mixing
Non-zero dispersion shifted fibres (NDF)

Low dispersion in 1550nm transmission window
Comprise solution between SMF (high PPdispersion) and DSF (high 
PPFWM)
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Other remedies for FWM it is too late or expense to 
install NDF

Using DSF for wavelengths beyond 1560 nm  (L-band)
Reducing transmitter power ⇒ amplifier spacing
Increase channel spacing

• Increases phase mismatch between interacting signals

Assign unequal channel spacing
• Choose channels so that FWM terms do not overlap with data 

channels
• Usually requires wider transmission windows
• Might use channels not compliant with ITU-T wavelength grid

8.4 Four-Wave Mixing 
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Due to intensity dependence of the refractive index
Power fluctuation lead to unwanted signal phase changes 
or modulations
Phase changes induces additional chirp (frequency 
variations) 

Self-phase modulation significant systems designed 
to operate at ≥10 Gb/s

Restricts maximum power per channel

Cross-phase modulation considered for WDM 
systems with a channel spacing < 20 GHz

8.5 Self- and Cross-phase Modulation 
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10. Overall Design Considerations 

What fiber type to deploy?
ITU-T

Standard
Name Typical CD value        

(C-band)
Applicability

G.652 standard Single 
Mode Fiber

17 ps/nm-km OK for xWDM

G.652c Low Water Peak 
SMF

17 ps/nm-km Good for CWDM

G.653 Dispersion-Shifted 
Fiber

0 ps/nm-km Bad for xWDM

G.654 Loss Minimized 
Fiber

20 ps/nm-km Good for long-haul 
DWDM

G.655 Non-Zero 
Dispersion-Shifted 

Fiber

1-6 ps/nm-km Good for DWDM

G.656 NDF for Wideband 
Optical Transport

2-14 ps/nm-km Good for xWDM



March 2007 EMU/S-72.3340/TransSysEng/ Slide 80 of 83

10. Overall Design Considerations 
What transmit power and amplifier spacing?

Points to consider include saturation power of EFDAs, effects of 
nonlinearities, safety requirements
From a cost point of view, amplifier spacing should be maximized

What modulation type?
NRZ modulation currently most popular and least expensive
RZ modulation 

• Lower nonlinearity and dispersion penalties
• For ultra-long-haul systems at 10 Gb/s and above

Phased-based modulation instead of intensity-based (OOK) 
modulation
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10. Overall Design Considerations 
What wavelength channel spacing and channel number?

Influencing actors ⇨ fiber type, component stability and crosstalk 
isolation
Maximize possible channel number for future capacity upgrades
A general rule of thumb ⇒ channel spacing needs to be at least 5-10 
times the channel bit rate
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Studied the effects of various impairments on the 
design of new generation of optical systems and 
networks

Transmission system design requires careful attention to 
each impairment
System penalties ⇒ component specs ⇒ system cost

Next lecture 
Standards for first generation of commercially deployed 
optical systems/networks

11. Conclusions
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Thank You!
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