## S-72.3410 Coding Methods

1. (6p.) Let $\mathbf{G}=\left[\begin{array}{llll}1 & 2 & 0 & 2 \\ 1 & 1 & 1 & 0\end{array}\right]$ be a generator matrix for a code over $\mathrm{GF}(3)$. Construct a parity-check matrix for it. What is the minimum distance of this code? Construct a syndrome table including all error patterns with a single error. Are the following words codewords (if not, correct them): 2122, 2012?
2. (6p.) Define or explain briefly the following concepts:
(a) constraint length of a convolutional code
(b) throughput of an ARQ protocol
(c) perfect block code
(d) ideal (in algebra)
(e) narrow-sense BCH code
(f) conjugates of a field element
3. (a) (3p.) Describe the systematic encoding technique for an $(n, k)$ cyclic code $C$ defined by the generator polynomial $g(x)$, when the $k$-bit message block is given by the message polynomial $m(x)$. Apply this technique to obtain the systematic codeword when the $(15,10)$ code generated by $g(x)=x^{5}+x^{4}+$ $x^{2}+1$ is used and $m(x)=x^{8}+x^{7}+x^{2}+1$.
(b) (3p.) Find a generator matrix for the Reed-Muller code $\mathcal{R}(1,3)$. What can you say about the dual code of this code?
4. (6p.) Consider the convolutional code defined by the transfer function matrix

$$
\mathbf{G}(D)=\left[\begin{array}{lll}
1+D & 1+D^{2} & 1+D+D^{2}
\end{array}\right] .
$$

A message is encoded, using this code, and transmitted over a binary symmetric channel. The received word is $\mathbf{r}=010,111,110,110,010,110,011$. Decode the message using the hard-decision Viterbi algorithm.

