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Background

In addition to turbo codes, LDPC codes is a class of codes decoded

iteratively and with good practical performance. LDPC codes were

originally discovered by Gallager in the early 1960s and rediscovered

by MacKay and Neal in 1996.

LDPC codes are occasionally called Gallager codes.
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LDPC Codes (1)

Low-density parity check (LDPC) codes are

• linear block codes with

• a sparse parity check matrix H.

Sparse means that most of the elements are 0. Note that the

direction of constructing matrices is opposite to the normal one:

design H and then calculate a generator matrix G, not design G and

then calculate H .
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LDPC Codes (2)

regular LDPC code An LDPC code with constant number of

0s per row and per column.

irregular LDPC code An LDPC code that is not regular.

Alphabet for LDPC codes: GF(2), GF(4), GF(8), GF(16),. . . .

Generally: better performance with bigger alphabet.

(Pseudo-)randomness occurs in turbo and LDPC codes in the

interleaver and in the parity check matrix, respectively.

Irregular LDPC codes in general perform better than regular LDPC

codes.
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Tanner Graph

bipartite graph A graph with vertex set V = V1 ∪ V2, where

each edge has one endpoint in V1 and one in V2.

A Tanner graph of an LDPC code with parity check matrix H has

one vertex in V1 for each row of H and one vertex in V2 for each

column of H, and there is an edge between two vertices i and j

exactly when hij 6= 0.
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Example: Tanner Graph
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Cycles of Tanner Graphs

Short cycles of Tanner graphs have a negative impact on decoding.

Cycles necessarily have even length and length 2 is not possible.

Avoiding cycles of length 4: The intersection of positions in

which two columns have nonzero values should be at most 1.

The requirement that a Tanner graph should not have short cycles is

an intricate part in the construction of good LDPC codes.

Note. The degrading effect of short-length cycles diminishes as the

code length increases and is strongly reduced with length > 1000 bits.
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Obtaining Generator Matrices

To obtain the generator matrix, the parity check matrix is converted

into systematic form—for example, using Gaussian elimination—after

which the transformation is straightforward.
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LDPC Code Types

LDPC codes can be divided into

• random LDPC codes and

• structured LDPC codes.

The best known codes are of the former types. Structured LDPC

codes can be constructed from various types of combinatorial objects

(designs, geometries,. . . ).
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Decoding LDPC Codes

Decoding LDPC codes is an iterative process of interchanging

information between the two types of nodes of the corresponding

Tanner graph. If

• at some point of the iterative process the syndrome of the

estimated decoded vector is the all-zero vector, this result is

output;

• the iterative process has not converged to a solution after a

predetermined number of iterations, decoding failure is

declared.

See [MF, Fig. 8.5] for the impact of the maximum number on

iterations on the BER performance.
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Calculating Estimates

The core part of the turbo decoding algorithm in the previous lecture

is the BCJR algorithm. The core part of the LDPC decoding

algorithm is the sum-product algorithm, or belief propagation

algorithm.

These algorithms are maximum a posteriori (MAP) algorithm—recall

that the Viterbi algorithm is a maximum likelihood (ML) algorithm.

It is a matter of estimating symbols versus estimating codewords.
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Some Practical Aspects of Decoding

� Polar format should be used instead of binary format.

� With logarithmic calculation, products and divisions are

converted into additions and subtractions, respectively (cf.

turbo coding slides).

� Look-up tables for parts of the logarithmic calculations save

a lot of time and do not have a significant impact on the

BER performance.
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Turbo vs. LDPC Codes

Turbo codes: Very good BER performance for intermediate block

length.

LDPC codes: Very good BER performance for long block length

(for example, BER performance with length n = 10, 000 that is less

than 0.1 dB from the Shannon limit).
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Erasure Channel

The code type to be discussed next is designed for the erasure

channel rather than AWGN, BSC, and similar channels assumed so

far.
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Fountain Code

Consider a (binary) message consisting of K data packets of m bits

each, that is, of total length Km. (It is common that communication

protocols transmit information in packets.)

Fountain code: The transmitter continuously transmits packets of

m bits that are obtained by XORing—that is, adding modulo

2—subsets of the packets. The receiver collects (just a little bit more

than) K packets to retrieve the original message.
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Decoding Fountain Codes

Decoding fountain codes means solving a system of equations. Call

the blocks B1, B2, . . . BK .

Example. K = 3, m = 4. Assume that for the received blocks we

have

B1 + B3 = 0100,

B2 + B3 = 1110,

B1 + B2 + B3 = 0000.

Adding the second and the third equation gives B1 = 1110, and then

B3 = 1010 and B2 = 0100.
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Random Fountain Codes

How to form the packets? One possibility: Random

combinations/sums of packets. The indices of the packets involved

must be known also by the receiver. When N such packets have been

received

• if N < K, decoding is not possible,

• if N = K, decoding is possible with probability about 0.289,

• if N = K + ∆, decoding is possible with probability at least

1 − 2−∆.
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Bipartite Graphs for Fountain Codes

Decoding fountain codes is about solving a system of equations,

which can be rather time-consuming if K is large.

As with LDPC codes, a bipartite graph may be useful in the

decoding process, with one set of nodes corresponding to the blocks

(variables) and the other to the received words.

Example. (cont.)
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Luby Transform Codes

Luby transform (LT) codes are improved random fountain codes.

� Random combinations/sums have only a few packets.

� The number of packets in the sums are given by an

optimized distribution function.

� Decoding is straightforward due to equations of the form

Bi =? throughout the calculations.
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