Definition: Group

Overview

Mathematics (in particular, algebra) is the language of coding theory. The most important mathematical objects needed in coding theory are groups, finite fields, and vector spaces. The first part of the course is devoted to an in-depth discussion of these topics.
(Note: finite field $=$ Galois field.)

Examples of Groups

set An arbitrary collection of elements. A set may be finite (e.g., $\{1,2,3\}$), countably infinite (e.g., the positive integers), or uncountably infinite (e.g., the real numbers).
cardinality The number of objects in the set. The cardinality of a set S is denoted by $|S|$.
order $=$ cardinality (in particular, when dealing with groups and fields).

Finite Groups (1)

We are primarily interested in finite groups. One of the simplest methods for constructing finite groups lies in the application of modular arithmetic. We write

$$
a \equiv b(\bmod m)
$$

(pronounced " a is equivalent-or congruent - to b modulo m ") if $a=b+k m$ for some integer k. This relation is reflexive, symmetric, and transitive, and therefore divides the set of integers into m distinct equivalence classes.

Finite Groups (2)

Example. Integers modulo 5.
$[0]=\{\ldots,-10,-5,0,5,10, \ldots\}$,
$[1]=\{\ldots,-9,-4,1,6,11, \ldots\}$,
$[2]=\{\ldots,-8,-3,2,7,12, \ldots\}$,
$[3]=\{\ldots,-7,-2,3,8,13, \ldots\}$,
$[4]=\{\ldots,-6,-1,4,9,14, \ldots\}$.
Theorem 2-1. The equivalence classes $[0],[1], \ldots,[m-1]$ form an abelian group of order m under addition modulo m.

Theorem 2-2. The equivalence classes $[1],[2] \ldots,[m-1]$ form an abelian group of order $m-1$ under multiplication modulo m if and only if m is a prime.

The Two Groups of Order 4

\cdot	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\cdot	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Addition mod 4
A dihedral group

A Multiplicative Group

\cdot	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Multiplication $\bmod 7$

More Definitions

order of a group element The order of $g \in G$ is the smallest positive integer n such that $\underbrace{g \cdot g \cdots \cdot g}_{n}=e$.
n
subgroup A subset $S \subseteq G$ that forms a group. It is proper if $S \neq G$.

Example. The group of addition modulo 4 contains the proper subgroups $\{0\}$ and $\{0,2\}$.
${ }^{(C)}$ Patric Östergård

Lagrange's Theorem

Theorem 2-4. If S is a subgroup of G, then $|S|$ divides $|G|$.
Proof: By Theorem 2-3, two distinct cosets of S are disjoint.
Moreover, all elements of G belong to some coset of S (for example, an element x belongs to $x \cdot S$). Therefore the distinct cosets, which are of order $|S|$, partition G, and the theorem follows.

Corollary. A group G of prime order has exactly the following subgroups: $\{e\}$ and G.
(C)Patric Östergård

Definition: Cosets

Let S be a subgroup of G. For any value of $x \in G$, the set $x \cdot S:=\{x \cdot s, s \in S\}$ (respectively, $S \cdot x$) forms a left coset (respectively, right coset) of S in G. If G is abelian, $x \cdot S=S \cdot x$, and left and right cosets coincide and are simply called cosets.

Example. The subgroup $\{0,2\}$ of the group of addition modulo 4 has the cosets $\{0,2\}$ and $\{1,3\}$.

Theorem 2-3. The distinct cosets of a subgroup $S \subseteq G$ are disjoint.

Examples of Rings

Example 1. The set of integers modulo m under addition and multiplication form a commutative ring with identity.

Example 2. Matrices with integer elements form a ring with identity under standard matrix addition and multiplication.

Example 3. The set of all polynomials with binary coefficients forms a commutative ring with identity under polynomial addition and multiplication with the coefficients taken modulo 2. This ring is usually denoted by $F_{2}[x]$ or $\mathrm{GF}(2)[x]$.
${ }^{(C)}$ Patric Östergård
${ }^{\text {© }}$ Patric Östergård

Definition: Field

A field is a set F with two binary operations $\cdot: F \times F \rightarrow F$ and $+: F \times F \rightarrow F$ for which the following requirements hold:

1. F forms an abelian group under + . The additive identity element is labeled 0 .
2. $F \backslash\{0\}$ forms an abelian group under .. The multiplicative identity element is labeled 1.
3. The operations + and \cdot distribute: $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

A field can also be defined as a commutative ring with identity in which every non-zero element has a multiplicative inverse.

> | + | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 1 | 0 |

+	0	1				
0	0	1				
1	1	0	\quad	\cdot	0	1
:---:	:---:	:---:				
0	0	0				
1	0	1				

Examples of Fields

Example 1. The rational numbers form an infinite field.
Example 2. The real numbers form an infinite field, as do the complex numbers.

Example 3. GF(2):
;-72.3410 Finite Fields (1)

Constructing Fields

Finite field $=$ Galois field.
Theorem 2-5. Let p be a prime. The integers $\{0,1, \ldots, p-1\}$
form the field $\mathrm{GF}(p)$ under addition and multiplication modulo p.
Theorem. The order of a finite field is p^{m}, where p is a prime. There is a unique field for each such order.

When $m>1$ in the previous theorem, one cannot use simple modular arithmetic. Instead, such fields can be constructed as vector spaces over $\operatorname{GF}(p)$.

Vector Spaces

Let V be a set of vectors and F a field of scalars with two operations: $+: V \times V \rightarrow V$ and $\cdot: F \times V \rightarrow V$. Then V forms a vector space over F if the following conditions are satisfied:

1. V forms an abelian group under + .
2. The operations + and \cdot distribute: $a \cdot(\mathbf{u}+\mathbf{v})=a \cdot \mathbf{u}+a \cdot \mathbf{v}$ and $(a+b) \cdot \mathbf{v}=a \cdot \mathbf{v}+b \cdot \mathbf{v}$.
3. Associativity: For all $a, b \in F$ and all $\mathbf{v} \in V$, $(a \cdot b) \cdot \mathbf{v}=a \cdot(b \cdot \mathbf{v})$.
4. The multiplicative identity $1 \in F$ acts as multiplicative identity in scalar multiplication: for all $\mathbf{v} \in V, 1 \cdot \mathbf{v}=\mathbf{v}$.

The field F is called the ground field of the vector space V.

Basis and Dimension (1)

A spanning set that has minimum cardinality is called a basis for V.

Example. The set $\{1000,0100,0010,0001\}$ is a (canonical) basis for V_{2}^{4}, where V_{q}^{n} denotes the set of q-ary n-tuples.

If a basis for a vector space V has k elements, then it is said to have dimension k, written $\operatorname{dim}(V)=k$.

On Vector Spaces

Example. A vector space over $\mathrm{GF}(3)$:
$(1,0,2,1)+(1,1,1,1)=(2,1,0,2), 2 \cdot(1,0,2,2)=(2,0,1,1)$.
The expression $a_{1} \cdot \mathbf{v}_{1}+a_{2} \cdot \mathbf{v}_{2}+\cdots+a_{m} \cdot \mathbf{v}_{m}$ where $a_{i} \in F$, $\mathbf{v}_{i} \in V$ is called a linear combination. A set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \subseteq V$ of vectors is called a spanning set if all vectors in V can be obtained as a linear combination of these vectors.

A set of vectors is said to be linearly dependent if (at least) one of the vectors can be expressed as a linear combination of the others. Otherwise, it is called linearly independent.

Inner Product and Dual Spaces

The inner product $\mathbf{u} \bullet \mathbf{v}$ of $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is defined as

$$
\mathbf{u} \bullet \mathbf{v}=\sum_{i=0}^{n-1} u_{i} \cdot v_{i}
$$

Let C be a k-dimensional subspace of a vector space V. The dual space of C, denoted by C^{\perp}, is the set of vectors $\mathbf{v} \in V$ such that for all $\mathbf{u} \in C, \mathbf{u} \bullet \mathbf{v}=0$.

Theorem 2-8. The dual space C^{\perp} of a vector subspace $C \subseteq V$ is itself a vector subspace of V.
(C) Patric Östergård

The Dimension Theorem

Theorem 2-9. Let C be a vector subspace of V. Then $\operatorname{dim}(C)+$ $\operatorname{dim}\left(C^{\perp}\right)=\operatorname{dim}(V)$.

Example. A code $C \subseteq V_{2}^{4}: C=\{0000,0101,0001,0100\}$, $C^{\perp}=\{0000,1010,1000,0010\}$. Then $\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=2+2=$ $4=\operatorname{dim}(V)$.

Question. What is the dual space C^{\perp} when $C=V$?

Properties of Finite Fields (1)

With $\beta \in \mathrm{GF}(q)$ and 1 the multiplicative identity, consider the sequence

$$
1, \beta, \beta^{2}, \ldots
$$

In a finite field, this sequence must begin to repeat at some point.
Question. Why must 1 be the first element to repeat?
The order of an element $\beta \in \mathrm{GF}(q)$, written ord (β), is the smallest positive integer m such that $\beta^{m}=1$ (cf. order of group element).
(C)Patric Östergård

Properties of Finite Fields (2)

Theorem 2-10. If $t=\operatorname{ord}(\beta)$, then $t \mid(q-1)$.
Proof: The set $\left\{\beta, \beta^{2}, \ldots, \beta^{\operatorname{ord}(\beta)}=1\right\}$ forms a subgroup of the nonzero elements in $\mathrm{GF}(q)$ under multiplication. The result then follows from Lagrange's theorem (Theorem 2-4).

Example. The elements of the field GF(16) can only have orders in $\{1,3,5,15\}$.

The Euler Totient Function

The Euler ϕ (or totient) function, $\phi(t)$, denotes the number of integers in $\{1,2, \ldots, t-1\}$ that are relatively prime to t. This function can be computed as follows when $t>1(\phi(1)=1)$:

$$
\phi(t)=t \prod_{p \mid t}\left(1-\frac{1}{p}\right)
$$

Example 1. $\phi(56)=\phi\left(2^{3} \cdot 7\right)=56(1-1 / 2)(1-1 / 7)=24$.
Example 2. If t is a prime, then $\phi(t)=t(1-1 / t)=t-1$, as expected.

Primitive Elements in Finite Fields

\triangleright If $t \not \backslash(q-1)$, then there are no elements of order t in $\mathrm{GF}(q)$ (Theorem 2-10).

Theorem 2-12. If $t \mid(q-1)$, then there are $\phi(t)$ elements of order t in $\operatorname{GF}(q)$.

An element in $\mathrm{GF}(q)$ with order $(q-1)$ is called a primitive element in $\mathrm{GF}(q)$. There are $\phi(q-1)$ primitive elements in $\mathrm{GF}(q)$.
\Rightarrow All nonzero elements in $\mathrm{GF}(q)$ can be represented as $(q-1)$ consecutive powers of a primitive element.

Example: GF(7)

Order i	Elements of order i	$\phi(i)$
1	$\{1\}$	1
2	$\{6\}$	1
3	$\{2,4\}$	2
4	None	-
5	None	-
6	$\{3,5\}$	2

For example, $5^{1}=5,5^{2}=4,5^{3}=6,5^{4}=2,5^{5}=3,5^{6}=1$.
(C)Patric Östergård
;-72.3410 Finite Fields (1)

Characteristic of Field

The characteristic of $\mathrm{GF}(q)$ is the smallest integer m such that $\underbrace{1+1+\cdots+1}_{m}=0$.

Theorem 2-13. The characteristic of a finite field is a prime.
Theorem 2-14. The order of a finite field is a power of a prime.

