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Overview

Mathematics (in particular, algebra) is the language of coding
theory. The most important mathematical objects needed in coding
theory are groups, finite fields, and vector spaces. The first part of
the course is devoted to an in-depth discussion of these topics.
(Note: finite field = Galois field.)

c©Patric Österg̊ard
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Definition: Set

set An arbitrary collection of elements. A set may be finite (e.g.,
{1, 2, 3}), countably infinite (e.g., the positive integers), or
uncountably infinite (e.g., the real numbers).

cardinality The number of objects in the set. The cardinality of a
set S is denoted by |S|.

order = cardinality (in particular, when dealing with groups and
fields).
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Definition: Group

A group is a set G on which a binary operation · : G × G → G is
defined and for which the following requirements hold:

1. Associativity: (a · b) · c = a · (b · c) for all a, b, c ∈ G.
2. Identity: there exists e ∈ G such that a · e = e · a = a for

all a ∈ G.
3. Inverse: for all a ∈ G there exists an element a−1 ∈ G

such that a · a−1 = a−1 · a = e.

A group is said to be commutative or abelian if it satisfies one more
requirement:

4. Commutativity: for all a, b ∈ G, a · b = b · a.
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Examples of Groups

Example 1. The set of integers forms an infinite abelian group
under integer addition, but not under integer multiplication (why
not?).

Example 2. The set of n× n matrices with real elements forms an
abelian group under matrix addition.
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Finite Groups (1)

We are primarily interested in finite groups. One of the simplest
methods for constructing finite groups lies in the application of
modular arithmetic. We write

a ≡ b (mod m)

(pronounced “a is equivalent—or congruent—to b modulo m”) if
a = b + km for some integer k. This relation is reflexive,
symmetric, and transitive, and therefore divides the set of integers
into m distinct equivalence classes.
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Finite Groups (2)

Example. Integers modulo 5.
[0] = {. . . ,−10,−5, 0, 5, 10, . . .},
[1] = {. . . ,−9,−4, 1, 6, 11, . . .},
[2] = {. . . ,−8,−3, 2, 7, 12, . . .},
[3] = {. . . ,−7,−2, 3, 8, 13, . . .},
[4] = {. . . ,−6,−1, 4, 9, 14, . . .}.

Theorem 2-1. The equivalence classes [0], [1], . . . , [m − 1] form an
abelian group of order m under addition modulo m.

Theorem 2-2. The equivalence classes [1], [2] . . . , [m − 1] form an
abelian group of order m − 1 under multiplication modulo m if and
only if m is a prime.
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The Two Groups of Order 4

· 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Addition mod 4

· 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

A dihedral group
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A Multiplicative Group

· 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

Multiplication mod 7
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More Definitions

order of a group element The order of g ∈ G is the smallest
positive integer n such that g · g · · · · · g︸ ︷︷ ︸

n

= e.

subgroup A subset S ⊆ G that forms a group. It is proper if
S 6= G.

Example. The group of addition modulo 4 contains the proper
subgroups {0} and {0, 2}.
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Definition: Cosets

Let S be a subgroup of G. For any value of x ∈ G, the set
x · S := {x · s, s ∈ S} (respectively, S · x) forms a left coset
(respectively, right coset) of S in G. If G is abelian, x · S = S · x,
and left and right cosets coincide and are simply called cosets.

Example. The subgroup {0, 2} of the group of addition modulo 4
has the cosets {0, 2} and {1, 3}.

Theorem 2-3. The distinct cosets of a subgroup S ⊆ G are
disjoint.
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Lagrange’s Theorem

Theorem 2-4. If S is a subgroup of G, then |S| divides |G|.

Proof: By Theorem 2-3, two distinct cosets of S are disjoint.
Moreover, all elements of G belong to some coset of S (for example,
an element x belongs to x · S). Therefore the distinct cosets, which
are of order |S|, partition G, and the theorem follows. �

Corollary. A group G of prime order has exactly the following
subgroups: {e} and G.
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Definition: Ring

A ring is a set R with two binary operations · : R × R → R and
+ : R × R → R for which the following requirements hold:

1. R forms an abelian group under +. The additive identity
element is labeled 0.

2. Associativity for ·: (a · b) · c = a · (b · c) for all a, b, c ∈ R.
3. The operation · distributes over +:

a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).

A ring is said to be a commutative ring and a ring with
identity, respectively, if the following two requirements hold:

4. The operation · commutes: a · b = b · a.
5. The operation · has an identity element, which is labeled 1.
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Examples of Rings

Example 1. The set of integers modulo m under addition and
multiplication form a commutative ring with identity.

Example 2. Matrices with integer elements form a ring with
identity under standard matrix addition and multiplication.

Example 3. The set of all polynomials with binary coefficients
forms a commutative ring with identity under polynomial addition
and multiplication with the coefficients taken modulo 2. This ring
is usually denoted by F2[x] or GF(2)[x].
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Definition: Field

A field is a set F with two binary operations · : F × F → F and
+ : F × F → F for which the following requirements hold:

1. F forms an abelian group under +. The additive identity
element is labeled 0.

2. F \ {0} forms an abelian group under ·. The multiplicative
identity element is labeled 1.

3. The operations + and · distribute:
a · (b + c) = (a · b) + (a · c).

A field can also be defined as a commutative ring with identity in
which every non-zero element has a multiplicative inverse.
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Examples of Fields

Example 1. The rational numbers form an infinite field.

Example 2. The real numbers form an infinite field, as do the
complex numbers.

Example 3. GF(2):

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1
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Constructing Fields

Finite field = Galois field.

Theorem 2-5. Let p be a prime. The integers {0, 1, . . . , p − 1}
form the field GF(p) under addition and multiplication modulo p.

Theorem. The order of a finite field is pm, where p is a prime.
There is a unique field for each such order.

When m > 1 in the previous theorem, one cannot use simple
modular arithmetic. Instead, such fields can be constructed as
vector spaces over GF(p).
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Vector Spaces

Let V be a set of vectors and F a field of scalars with two
operations: + : V × V → V and · : F × V → V . Then V forms a
vector space over F if the following conditions are satisfied:

1. V forms an abelian group under +.
2. The operations + and · distribute: a · (u + v) = a · u + a · v

and (a + b) · v = a · v + b · v.
3. Associativity: For all a, b ∈ F and all v ∈ V ,

(a · b) · v = a · (b · v).
4. The multiplicative identity 1 ∈ F acts as multiplicative

identity in scalar multiplication: for all v ∈ V , 1 · v = v.

The field F is called the ground field of the vector space V .

c©Patric Österg̊ard
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On Vector Spaces

Example. A vector space over GF(3):
(1, 0, 2, 1) + (1, 1, 1, 1) = (2, 1, 0, 2), 2 · (1, 0, 2, 2) = (2, 0, 1, 1).

The expression a1 · v1 + a2 · v2 + · · · + am · vm where ai ∈ F ,
vi ∈ V is called a linear combination. A set {v1,v2, . . . ,vm} ⊆ V

of vectors is called a spanning set if all vectors in V can be
obtained as a linear combination of these vectors.

A set of vectors is said to be linearly dependent if (at least) one of
the vectors can be expressed as a linear combination of the others.
Otherwise, it is called linearly independent.
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Basis and Dimension (1)

A spanning set that has minimum cardinality is called a basis for
V .

Example. The set {1000, 0100, 0010, 0001} is a (canonical) basis
for V 4

2 , where V n
q denotes the set of q-ary n-tuples.

If a basis for a vector space V has k elements, then it is said to
have dimension k, written dim(V ) = k.
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Basis and Dimension (2)

Theorem 2-6. Let {v1,v2, . . . ,vk} be a basis for a vector space
V . For every vector v ∈ V there is a representation
v = a1v1 + a2v2 + · · · + akvk. This representation is unique.

Corollary. |V | = |F |k.

A vector space V ′ is said to be a vector subspace of V if V ′ ⊆ V .
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Inner Product and Dual Spaces

The inner product u • v of u = (u0, u1, . . . , un−1) and
v = (v0, v1, . . . , vn−1) is defined as

u • v =
n−1∑
i=0

ui · vi.

Let C be a k-dimensional subspace of a vector space V . The dual
space of C, denoted by C⊥, is the set of vectors v ∈ V such that
for all u ∈ C, u • v = 0.

Theorem 2-8. The dual space C⊥ of a vector subspace C ⊆ V is
itself a vector subspace of V .
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The Dimension Theorem

Theorem 2-9. Let C be a vector subspace of V . Then dim(C) +
dim(C⊥) = dim(V ).

Example. A code C ⊆ V 4
2 : C = {0000, 0101, 0001, 0100},

C⊥ = {0000, 1010, 1000, 0010}. Then dim(C) + dim(C⊥) = 2+2 =
4 = dim(V ).

Question. What is the dual space C⊥ when C = V ?

c©Patric Österg̊ard

S-72.3410 Finite Fields (1) 23'

&

$

%

Properties of Finite Fields (1)

With β ∈ GF(q) and 1 the multiplicative identity, consider the
sequence

1, β, β2, . . . .

In a finite field, this sequence must begin to repeat at some point.

Question. Why must 1 be the first element to repeat?

The order of an element β ∈ GF(q), written ord(β), is the smallest
positive integer m such that βm = 1 (cf. order of group element).
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Properties of Finite Fields (2)

Theorem 2-10. If t = ord(β), then t | (q − 1).

Proof: The set {β, β2, . . . , βord(β) = 1} forms a subgroup of the
nonzero elements in GF(q) under multiplication. The result then
follows from Lagrange’s theorem (Theorem 2-4). �

Example. The elements of the field GF(16) can only have orders
in {1, 3, 5, 15}.
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The Euler Totient Function

The Euler φ (or totient) function, φ(t), denotes the number of
integers in {1, 2, . . . , t − 1} that are relatively prime to t. This
function can be computed as follows when t > 1 (φ(1) = 1):

φ(t) = t
∏
p|t

(
1 − 1

p

)
.

Example 1. φ(56) = φ(23 · 7) = 56(1 − 1/2)(1 − 1/7) = 24.

Example 2. If t is a prime, then φ(t) = t(1 − 1/t) = t − 1, as
expected.
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Primitive Elements in Finite Fields

B If t 6 | (q − 1), then there are no elements of order t in
GF(q) (Theorem 2-10).

Theorem 2-12. If t | (q − 1), then there are φ(t) elements of order
t in GF(q).

An element in GF(q) with order (q − 1) is called a primitive
element in GF(q). There are φ(q − 1) primitive elements in GF(q).

⇒ All nonzero elements in GF(q) can be represented as
(q − 1) consecutive powers of a primitive element.
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Example: GF(7)

Order i Elements of order i φ(i)

1 {1} 1
2 {6} 1
3 {2, 4} 2
4 None –
5 None –
6 {3, 5} 2

For example, 51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1.
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Characteristic of Field

The characteristic of GF(q) is the smallest integer m such that
1 + 1 + · · · + 1︸ ︷︷ ︸

m

= 0.

Theorem 2-13. The characteristic of a finite field is a prime.

Theorem 2-14. The order of a finite field is a power of a prime.
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