Finite Fields of Order p^{m} (1)

The following results were discussed in the previous lecture:
\triangleright The order of a finite field is a prime power.
\triangleright There is a unique finite field for each such order.
\triangleright If the order of a finite field is a prime p, one may act on $\{0,1, \ldots, p-1\}$ with addition and multiplication modulo p.

The case $p^{m}, m>1$, is (somewhat) more complicated. In the sequel, p is always a prime.

Finite Fields of Order p^{m} (2)

The collection of all polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with arbitrary degree and $a_{i} \in \mathrm{GF}(q)$ is denoted by $\mathrm{GF}(q)[x]$. (Earlier example: these polynomials form a commutative ring with identity.)

Example. We consider GF(3)[x]:
$\left(x^{3}+2 x^{2}+1\right)+\left(x^{2}+x+1\right)=x^{3}+3 x^{2}+x+2=x^{3}+x+2$,
$(x+1) \cdot\left(x^{2}+2 x+1\right)=x^{3}+2 x^{2}+x+x^{2}+2 x+1=x^{3}+1$.

Irreducible Polynomials

A polynomial $f(x) \in \mathrm{GF}(q)[x]$ is irreducible if $f(x)$ cannot be factored into a product of lower-degree polynomials in $\operatorname{GF}(q)[x]$. Otherwise, it is said to be reducible.

Example 1. The polynomial $x^{3}+1 \in \mathrm{GF}(3)[x]$ is not irreducible (a factoring is given in the previous example).

Example 2. The polynomial $x^{2}+x+1 \in \mathrm{GF}(2)[x]$ is irreducible, but $x^{2}+x+1 \in \mathrm{GF}(4)[x]$ is not. (Irreducibility in $\mathrm{GF}(2)[x]$ follows as $x \cdot(x+1)=x^{2}+x,(x+1) \cdot(x+1)=x^{2}+1$, and $x \cdot x=x^{2}$.)
\Rightarrow The term irreducible must be used only with respect to a specific ring.
(C)Patric Östergård

Primitive Polynomials

An irreducible polynomial $f(x) \in \operatorname{GF}(p)[x]$ of degree m is
primitive if the smallest n for which $f(x)$ divides $x^{n}-1$ is $n=p^{m}-1$. (It can be shown that $f(x)$ always divides $x^{p^{m}-1}-1$.)

Example. The polynomial $x^{3}+x+1 \in \mathrm{GF}(2)[x]$ is primitive, since it is irreducible and does not divide any of $x^{4}-1, x^{5}-1$, and $x^{6}-1\left(p^{m}-1=2^{3}-1=7\right)$.

NOTE!!! In GF(2), $-1=1$.
Example. In $\mathrm{GF}(2)[x], x^{7}-1=x^{7}+1$.
There are $\phi\left(2^{m}-1\right) / m$ binary primitive polynomials of degree m; for small values of m, see [Wic, Appendix A].

A Finite Field as a Vector Space

Constructing a Field of Order p^{n}

Let p be a prime and $m>1$.

1. Take a primitive polynomial $f(x)$ of degree m in $\operatorname{GF}(p)[x]$, and let α be a root of $f(x)(f(\alpha)=0)$.
2. The elements of the field are $0,1=\alpha^{0}, \alpha^{1}, \ldots, \alpha^{p^{m}-2}$ taken modulo $f(\alpha)$.
3. Carry out addition and multiplication modulo $f(\alpha)$.

Note: We do not explicitly solve $f(\alpha)=0$ for α.

0	\leftrightarrow	$(0,0)$
1	\leftrightarrow	$(0,1)$
α	\leftrightarrow	$(1,0)$
$\alpha^{2}=\alpha+1$	\leftrightarrow	$(1,1)$

A field of prime power order $\operatorname{GF}\left(p^{m}\right)$ is often called an extension of $\mathrm{GF}(p)$.
The polynomial representation for $\mathrm{GF}\left(p^{m}\right)$ has coefficients in the ground field $\mathrm{GF}(p)$. Therefore, one may interpret $\mathrm{GF}\left(p^{m}\right)$ as a vector space over $\operatorname{GF}(p)$.

Example. GF (4).

$$
\begin{array}{lll}
0 & \leftrightarrow & (0,0) \\
1 & \leftrightarrow & (0,1) \\
\alpha & \leftrightarrow & (1,0) \\
\alpha^{2}=\alpha+1 & \leftrightarrow & (1,1)
\end{array}
$$

(C) Patric Östergård

Example: Constructing GF(4)

We take the primitive polynomial $f(x)=x^{2}+x+1 \in \mathrm{GF}(2)[x]$, and let α be a root of $f(x)$. Then $\alpha^{0}=1, \alpha^{1}=\alpha$, and $\alpha^{2}=\alpha+1$ $\left(\right.$ and $\left.\alpha^{3}=\alpha(\alpha+1)=\alpha^{2}+\alpha=1\right)$.

+	0	1	α	$\alpha+1$		\cdot	0	1	α	$\alpha+1$
0	0	1	α	$\alpha+1$		0	0	0	0	0
1	1	0	$\alpha+1$	α		1	0	1	α	$\alpha+1$
α	α	$\alpha+1$	0	1		α	0	α	$\alpha+1$	1
$\alpha+1$	$\alpha+1$	α	1	0		$\alpha+1$	0	$\alpha+1$	1	α

Computing in Fields (2)

The study of algorithms for operating on fields is one of most important research topics in computational algrebra with many important applications (in coding, cryptography, etc.).

Two possibilities if the field is relatively small:

- Construct a look-up table of size $q \times q$.
- Use so-called Zech logarithms; this requires a table of size q.
${ }^{(C)}$ Patric Östergård

Subfields

A subset $S \subseteq \mathrm{GF}\left(p^{m}\right)$ that is a field is called a subfield of $\mathrm{GF}\left(p^{m}\right)$. Every field $\mathrm{GF}\left(p^{m}\right)$ has itself as subfield; any other subfield is called proper.

Theorem. The subfields of $\operatorname{GF}\left(p^{m}\right)$ are exactly the fields $\operatorname{GF}\left(p^{a}\right)$ where $a \mid m$.

Example. $\operatorname{GF}(64)=\operatorname{GF}\left(2^{6}\right)$ contains $\operatorname{GF}\left(2^{1}\right), \operatorname{GF}\left(2^{2}\right), \operatorname{GF}\left(2^{3}\right)$, and $\operatorname{GF}\left(2^{6}\right)$ as subfields.

Minimal Polynomials

Let $\alpha \in \operatorname{GF}\left(q^{m}\right)$. The minimal polynomial of α with respect to $\mathrm{GF}(q)$ is the smallest-degree nonzero polynomial $f(x) \in \mathrm{GF}(q)[x]$ such that $f(\alpha)=0$.

Theorem 3-2. For each $\alpha \in \operatorname{GF}\left(q^{m}\right)$ there exists a unique monic polynomial $f(x) \in \operatorname{GF}(q)[x]$ of minimal degree such that

1. $f(\alpha)=0$,
2. $\operatorname{deg}(f(x)) \leq m$,
3. $g(\alpha)=0$ implies that $g(x)$ is a multiple of $f(x)$,
4. $f(x)$ is irreducible in $\mathrm{GF}(q)[x]$.

Another definition for primitive polynomials: the minimal polynomials for primitive elements in a Galois field.
(C) Patric Östergård

Conjugates of Field Elements

Motivation: If we want a polynomial $f(x) \in \mathrm{GF}(q)[x]$ to have a root $\alpha \in \mathrm{GF}\left(q^{m}\right)$, what other roots must the polynomial have?

The conjugates of $\alpha \in \operatorname{GF}\left(q^{m}\right)$ with respect to the subfield $\operatorname{GF}(q)$ are the elements $\alpha^{q^{0}}=\alpha, \alpha^{q^{1}}, \alpha^{q^{2}}, \ldots$, which form the conjugacy class of α with respect to $\operatorname{GF}(q)$.

Theorem 3-3. The conjugacy class of $\alpha \in \mathrm{GF}\left(q^{m}\right)$ with respect to $\mathrm{GF}(q)$ contains d elements (that is, $\alpha^{q^{d}}=\alpha$) with $d \mid m$.

Conjugacy Classes and Roots

Example. By Theorems 2-10 and 2-12, the orders of elements in $\mathrm{GF}(16)$ are $1,3,5$, and 15 . Let α be an element of order 3. The conjugates of α with respect to $\operatorname{GF}(2)$ are $\alpha, \alpha^{2}, \alpha^{2^{2}}=\alpha^{3} \alpha=\alpha$, so the conjugacy class is $\left\{\alpha, \alpha^{2}\right\}$.

Theorem 3-4. Let $\alpha \in \mathrm{GF}\left(q^{m}\right)$ and let $f(x)$ be the minimal polynomial of α with respect to $\operatorname{GF}(q)$. The roots of $f(x)$ are exactly the conjugates of α with respect to $\operatorname{GF}(q)$.

Corollary. All the roots of an irreducible polynomial have the same order.

Factoring $x^{n}-1$ (1)

Theorem 3-5. The nonzero elements in $\operatorname{GF}\left(q^{m}\right)$ form the complete set of roots of $x^{\left(q^{m}-1\right)}-1=0$.

Proof: For an arbitrary $\alpha \in \operatorname{GF}\left(q^{m}\right)$, ord $(\alpha) \mid\left(q^{m}-1\right)$ by
Theorem 2-10, and therefore α is a root of $x^{\left(q^{m}-1\right)}-1=0$.
Moreover, the equation $x^{\left(q^{m}-1\right)}-1=0$ is of degree $\left(q^{m}-1\right)$ and can therefore have at most $\left(q^{m}-1\right)$ roots. Therefore, the nonzero elements of $\mathrm{GF}\left(q^{m}\right)$ comprise the complete set of roots.

Example. Factorization of $x^{7}-1$ in $\mathrm{GF}(2)[x]$. Using the results on the previous slide,

$$
x^{7}-1=(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

${ }^{(C)}$ Patric Östergård
© ${ }_{\text {Patric }}$ Östergård

Example: Minimal Polynomials for GF(8)

Let α be root of the primitive polynomial $x^{3}+x+1 \in \operatorname{GF}[2](x)$.
Then the elements of GF(8) are
$0=0, \alpha^{0}=1, \alpha^{1}=\alpha, \alpha^{2}=\alpha^{2}, \alpha^{3}=\alpha+1, \alpha^{4}=\alpha^{2}+\alpha$,
$\alpha^{5}=\alpha^{2}+\alpha+1, \alpha^{6}=\alpha^{2}+1$.
Conjugacy class Minimal polynomial
$\{0\}$

$$
M_{*}(x)=x-0=x
$$

$\left\{\alpha^{0}=1\right\} \quad M_{0}(x)=x-1=x+1$
$\left\{\alpha, \alpha^{2}, \alpha^{4}\right\} \quad M_{1}(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{4}\right)=x^{3}+x+1$
$\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\} \quad M_{3}(x)=\left(x-\alpha^{3}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{5}\right)=x^{3}+x^{2}+1$

Factoring $x^{n}-1$ (3)

By Theorem 2-12, we know that if $n \mid\left(p^{m}-1\right)$, then there are $\phi(n)>0$ elements of order n in $\operatorname{GF}\left(p^{m}\right)$.

The order of q modulo n is the smallest integer m such that $n \mid\left(q^{m}-1\right)$.

Example. Since $5 \nmid\left(2^{1}-1\right), 5 \nmid\left(2^{2}-1\right), 5 \nmid\left(2^{3}-1\right), 5 \mid\left(2^{4}-1\right)$, $\mathrm{GF}(16)$ is the smallest binary extension field in which one may find primitive 5 th roots of unity (and the order of 2 modulo 5 is 4).
${ }^{(C)}$ Patric Östergård

Example: Factoring $x^{25}-1$ in GF $(2)[x]$

Let β be a primitive 25 th root of unity. The order of 2 modulo 25 is 20 , so we consider $\operatorname{GF}\left(2^{20}\right)$. The 25 roots of $x^{25}-1=0$ can be grouped into the following conjugacy classes with respect to $\mathrm{GF}(2)$:
\{1\},
$\left\{\beta, \beta^{2}, \beta^{4}, \beta^{8}, \beta^{16}, \beta^{7}, \beta^{14}, \beta^{3}, \beta^{6}, \beta^{12}, \beta^{24}, \beta^{23}, \beta^{21}, \beta^{17}, \beta^{9}, \beta^{18}, \beta^{11}\right.$, $\left.\beta^{22}, \beta^{19}, \beta^{13}\right\}$,
$\left\{\beta^{5}, \beta^{10}, \beta^{20}, \beta^{15}\right\}$.
Consequently, $x^{25}-1$ factors into three irreducible binary polynomials: one of degree one $(x-1)$, one of degree four, and one of degree twenty.

Cyclotomic Cosets

The cyclotomic cosets modulo n with respect to $\mathrm{GF}(q)$ constitute a partitioning of the integers into sets of the form

$$
\left\{a, a q, a q^{2}, \ldots, a q^{d-1}\right\}
$$

Example. Cyclotomic cosets modulo 25 with respect to GF(2) (cf. previous example):
\{0\},
$\{1,2,4,8,16,7,14,3,6,12,24,23,21,17,9,18,11,22,19,13\}$, $\{5,10,20,15\}$.

Earlier result: If the ring of integers is reduced modulo m, then we get a field if m is a prime, and a commutative ring with identity otherwise. What if rings of polynomials are reduced modulo a polynomial $f(x)$?

The ring of polynomials $\mathrm{GF}(q)[x]$ modulo $f(x)$ is usually denoted by $\operatorname{GF}(q)[x] / f(x)$.

Theorem 3-6. If $p(x) \in \operatorname{GF}(q)[x]$ is an irreducible polynomial, then $\operatorname{GF}(q)[x] / p(x)$ is a field.

Ideals

Let R be a ring. A nonempty subset $I \subseteq R$ is said to be an ideal if

1. I forms a group under the additive operation in R.
2. For all $a \in I$ and all $r \in R, r \cdot a \in I$ and $a \cdot r \in I$.

Example 1. In any ring $R,\{0\}$ and R are ideals. These are the trivial ideals.

Example 2. Let $R_{n}=\mathrm{GF}(2)[x] /\left(x^{n}+1\right)$. The set $\left\{0, x^{4}+x^{3}+x^{2}+x+1\right\}$ forms an ideal in R_{5}. (Note that $x^{5}+1=\left(x^{4}+x^{3}+x^{2}+x+1\right)(x+1)$.
${ }^{\text {© }}$ Patric Östergård
;-72.3410 Finite Fields (2)

Some Properties of Ideals

Theorem 3-7. Let I be an ideal in $\operatorname{GF}(q)[x] /\left(x^{n}-1\right)$. Then the following hold:

1. There exists a unique monic polynomial $g(x) \in I$ of minimal degree.
2. The ideal I is principal with generator $g(x)$.
3. The polynomial $g(x)$ divides $\left(x^{n}-1\right)$ in $\mathrm{GF}(q)[x]$.
