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Finite Fields of Order pm (1)

The following results were discussed in the previous lecture:

B The order of a finite field is a prime power.
B There is a unique finite field for each such order.
B If the order of a finite field is a prime p, one may act on

{0, 1, . . . , p− 1} with addition and multiplication modulo p.

The case pm, m > 1, is (somewhat) more complicated. In the
sequel, p is always a prime.
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Finite Fields of Order pm (2)

The collection of all polynomials anxn + an−1x
n−1 + · · · + a1x + a0

with arbitrary degree and ai ∈ GF(q) is denoted by GF(q)[x].
(Earlier example: these polynomials form a commutative ring with
identity.)

Example. We consider GF(3)[x]:

(x3 + 2x2 + 1) + (x2 + x + 1) = x3 + 3x2 + x + 2 = x3 + x + 2,

(x + 1) · (x2 + 2x + 1) = x3 + 2x2 + x + x2 + 2x + 1 = x3 + 1.
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Irreducible Polynomials

A polynomial f(x) ∈ GF(q)[x] is irreducible if f(x) cannot be
factored into a product of lower-degree polynomials in GF(q)[x].
Otherwise, it is said to be reducible.

Example 1. The polynomial x3 + 1 ∈ GF(3)[x] is not irreducible
(a factoring is given in the previous example).

Example 2. The polynomial x2 + x + 1 ∈ GF(2)[x] is irreducible,
but x2 + x + 1 ∈ GF(4)[x] is not. (Irreducibility in GF(2)[x] follows
as x · (x + 1) = x2 + x, (x + 1) · (x + 1) = x2 + 1, and x · x = x2.)

⇒ The term irreducible must be used only with respect to a
specific ring.

c©Patric Österg̊ard

S-72.3410 Finite Fields (2) 4'

&

$

%

Primitive Polynomials

An irreducible polynomial f(x) ∈ GF(p)[x] of degree m is
primitive if the smallest n for which f(x) divides xn − 1 is
n = pm − 1. (It can be shown that f(x) always divides xpm−1 − 1.)

Example. The polynomial x3 + x + 1 ∈ GF(2)[x] is primitive,
since it is irreducible and does not divide any of x4 − 1, x5 − 1, and
x6 − 1 (pm − 1 = 23 − 1 = 7).

NOTE!!! In GF(2), −1 = 1.

Example. In GF(2)[x], x7 − 1 = x7 + 1.

There are φ(2m − 1)/m binary primitive polynomials of degree m;
for small values of m, see [Wic, Appendix A].
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Constructing a Field of Order pm

Let p be a prime and m > 1.

1. Take a primitive polynomial f(x) of degree m in GF(p)[x],
and let α be a root of f(x) (f(α) = 0).

2. The elements of the field are 0, 1 = α0, α1, . . . , αpm−2 taken
modulo f(α).

3. Carry out addition and multiplication modulo f(α).

Note: We do not explicitly solve f(α) = 0 for α.
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Example: Constructing GF(4)

We take the primitive polynomial f(x) = x2 + x + 1 ∈ GF(2)[x],
and let α be a root of f(x). Then α0 = 1, α1 = α, and α2 = α + 1
(and α3 = α(α + 1) = α2 + α = 1).

+ 0 1 α α+1

0 0 1 α α+1

1 1 0 α+1 α

α α α+1 0 1

α+1 α+1 α 1 0

· 0 1 α α+1

0 0 0 0 0

1 0 1 α α+1

α 0 α α+1 1

α+1 0 α+1 1 α
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A Finite Field as a Vector Space

The polynomial representation for GF(pm) has coefficients in the
ground field GF(p). Therefore, one may interpret GF(pm) as a
vector space over GF(p).

Example. GF(4).

0 ↔ (0, 0)

1 ↔ (0, 1)

α ↔ (1, 0)

α2 = α + 1 ↔ (1, 1)

A field of prime power order GF(pm) is often called an extension of
GF(p).
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Computing in Fields (1)

B Addition is direct if one considers polynomials modulo
f(α) = vectors over GF(p).

B Multiplication is direct if one represent the elements of the
field as 0 and αi, 0 ≤ i ≤ pm − 2.

B But: In neither of these cases can the other operation be
carried out in a direct way.
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Computing in Fields (2)

The study of algorithms for operating on fields is one of most
important research topics in computational algrebra with many
important applications (in coding, cryptography, etc.).

Two possibilities if the field is relatively small:

• Construct a look-up table of size q × q.
• Use so-called Zech logarithms; this requires a table of size q.
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Subfields

A subset S ⊆ GF(pm) that is a field is called a subfield of
GF(pm). Every field GF(pm) has itself as subfield; any other
subfield is called proper.

Theorem. The subfields of GF(pm) are exactly the fields GF(pa)
where a | m.

Example. GF(64) = GF(26) contains GF(21), GF(22), GF(23),
and GF(26) as subfields.
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Minimal Polynomials

Let α ∈ GF(qm). The minimal polynomial of α with respect to
GF(q) is the smallest-degree nonzero polynomial f(x) ∈ GF(q)[x]
such that f(α) = 0.

Theorem 3-2. For each α ∈ GF(qm) there exists a unique monic
polynomial f(x) ∈ GF(q)[x] of minimal degree such that

1. f(α) = 0,
2. deg(f(x)) ≤ m,
3. g(α) = 0 implies that g(x) is a multiple of f(x),
4. f(x) is irreducible in GF(q)[x].

Another definition for primitive polynomials: the minimal
polynomials for primitive elements in a Galois field.
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Conjugates of Field Elements

Motivation: If we want a polynomial f(x) ∈ GF(q)[x] to have a
root α ∈ GF(qm), what other roots must the polynomial have?

The conjugates of α ∈ GF(qm) with respect to the subfield GF(q)
are the elements αq0

= α, αq1
, αq2

, . . ., which form the conjugacy
class of α with respect to GF(q).

Theorem 3-3. The conjugacy class of α ∈ GF(qm) with respect to
GF(q) contains d elements (that is, αqd

= α) with d | m.
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Conjugacy Classes and Roots

Example. By Theorems 2-10 and 2-12, the orders of elements in
GF(16) are 1, 3, 5, and 15. Let α be an element of order 3. The
conjugates of α with respect to GF(2) are α, α2, α22

= α3α = α, so
the conjugacy class is {α, α2}.

Theorem 3-4. Let α ∈ GF(qm) and let f(x) be the minimal
polynomial of α with respect to GF(q). The roots of f(x) are
exactly the conjugates of α with respect to GF(q).

Corollary. All the roots of an irreducible polynomial have the
same order.
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Example: Minimal Polynomials for GF(8)

Let α be root of the primitive polynomial x3 + x + 1 ∈ GF[2](x).
Then the elements of GF(8) are

0 = 0, α0 = 1, α1 = α, α2 = α2, α3 = α + 1, α4 = α2 + α,
α5 = α2 + α + 1, α6 = α2 + 1.

Conjugacy class Minimal polynomial

{0} M∗(x) = x − 0 = x

{α0 = 1} M0(x) = x − 1 = x + 1

{α, α2, α4} M1(x) = (x − α)(x − α2)(x − α4) = x3 + x + 1

{α3, α6, α5} M3(x) = (x − α3)(x − α6)(x − α5) = x3 + x2 + 1
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Factoring xn − 1 (1)

Theorem 3-5. The nonzero elements in GF(qm) form the
complete set of roots of x(qm−1) − 1 = 0.

Proof: For an arbitrary α ∈ GF(qm), ord(α) | (qm − 1) by
Theorem 2-10, and therefore α is a root of x(qm−1) − 1 = 0.
Moreover, the equation x(qm−1) − 1 = 0 is of degree (qm − 1) and
can therefore have at most (qm − 1) roots. Therefore, the nonzero
elements of GF(qm) comprise the complete set of roots. �

Example. Factorization of x7 − 1 in GF(2)[x]. Using the results
on the previous slide,

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).
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Factoring xn − 1 (2)

We now know how to factor x(qm−1) − 1 into irreducible
polynomials in the ring GF(q)[x]. What about the general case
(xn − 1)?

All roots of (xn − 1) are nth roots of unity. We need to

1. identify the field where we can find all of these roots,
2. separate the roots into conjugacy classes, and
3. compute the minimal polynomials of the nth roots of unity.

If we have an element β ∈ GF(pm) of order n, then the solutions to
xn − 1 = 0 are 1, β, β2, . . . , βn−1. These distinct elements of order
n are often called primitive nth roots of unity.

How to find β and the order of the field?
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Factoring xn − 1 (3)

By Theorem 2-12, we know that if n | (pm − 1), then there are
φ(n) > 0 elements of order n in GF(pm).

The order of q modulo n is the smallest integer m such that
n | (qm − 1).

Example. Since 5 6 | (21 − 1), 5 6 | (22 − 1), 5 6 | (23 − 1), 5 | (24 − 1),
GF(16) is the smallest binary extension field in which one may find
primitive 5th roots of unity (and the order of 2 modulo 5 is 4).
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Example: Factoring x25 − 1 in GF(2)[x]

Let β be a primitive 25th root of unity. The order of 2 modulo 25
is 20, so we consider GF(220). The 25 roots of x25 − 1 = 0 can be
grouped into the following conjugacy classes with respect to GF(2):

{1},
{β, β2, β4, β8, β16, β7, β14, β3, β6, β12, β24, β23, β21, β17, β9, β18, β11,

β22, β19, β13},
{β5, β10, β20, β15}.

Consequently, x25 − 1 factors into three irreducible binary
polynomials: one of degree one (x − 1), one of degree four, and one
of degree twenty.
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Cyclotomic Cosets

The cyclotomic cosets modulo n with respect to GF(q) constitute
a partitioning of the integers into sets of the form

{a, aq, aq2, . . . , aqd−1}.

Example. Cyclotomic cosets modulo 25 with respect to GF(2)
(cf. previous example):

{0},
{1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13},
{5, 10, 20, 15}.
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Polynomials Modulo f(x)

Earlier result: If the ring of integers is reduced modulo m, then we
get a field if m is a prime, and a commutative ring with identity
otherwise. What if rings of polynomials are reduced modulo a
polynomial f(x) ?

The ring of polynomials GF(q)[x] modulo f(x) is usually denoted
by GF(q)[x]/f(x).

Theorem 3-6. If p(x) ∈ GF(q)[x] is an irreducible polynomial,
then GF(q)[x]/p(x) is a field.
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Ideals

Let R be a ring. A nonempty subset I ⊆ R is said to be an ideal if

1. I forms a group under the additive operation in R.
2. For all a ∈ I and all r ∈ R, r · a ∈ I and a · r ∈ I.

Example 1. In any ring R, {0} and R are ideals. These are the
trivial ideals.

Example 2. Let Rn = GF(2)[x]/(xn + 1). The set
{0, x4 + x3 + x2 + x + 1} forms an ideal in R5. (Note that
x5 + 1 = (x4 + x3 + x2 + x + 1)(x + 1).)
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Principal Ideals

An ideal I contained in a ring R is said to be a principal ideal if
there exists g ∈ I such that every element c ∈ I can be expressed as
m · g for some m ∈ R.

The element g is commonly called a generator element, and the
ideal generated by g is denoted by 〈g〉.

B Ideals in GF(q)[x]/(xn − 1) play a central role in the theory
of linear cyclic codes.
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Some Properties of Ideals

Theorem 3-7. Let I be an ideal in GF(q)[x]/(xn − 1). Then the
following hold:

1. There exists a unique monic polynomial g(x) ∈ I of
minimal degree.

2. The ideal I is principal with generator g(x).
3. The polynomial g(x) divides (xn − 1) in GF(q)[x].
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