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Block Codes

block code A code C that consists of words of the form
(c0, c1, . . . , cn−1), where n is the number of coordinates (and is
said to be the length of the code).

q-ary code A code whose coordinate values are taken from a set
(alphabet) of size q (unless otherwise stated, GF(q)).

encoding Breaking the data stream into blocks, and mapping
these blocks onto codewords in C.

The encoding process is depicted in [Wic, Fig. 4-1].
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Redundancy

If the data blocks of a q-ary code are of length k, then there are
M = qk possible data vectors. (But all data blocks are not
necessarily of the same length.)

There are qn possible words of length n, out of which qn − M are
not valid codewords. The redundancy r of a code is

r = n − logq M,

which simplifies to r = n − k if M = qk.
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Code Rate

The redundancy is frequently expressed in terms of the code rate.
The code rate R of a code C of size M and length n is

R =
logq M

n
.

Again, if M = qk, R = k/n.
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Transmission Errors

The corruption of a codeword by channel noise, modeled as an
additive process, is shown in [Wic, Fig. 4-2].

error detection Determination (by the error control decoder)
whether errors are present in a received word.

undetectable error An error pattern that causes the received
word to be a valid word other than the transmitted word.

error correction Determine which of the valid codewords is most
likely to have been sent.

decoder error In error correction, selecting a codeword other
than that which was transmitted.
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Error Control

The decoder may react to a detected error with one of the following
three responses:

automatic repeat request (ARQ) Request a retransmission of
the word. For applications where data reliability is of great
importance.

muting Tag the word as being incorrect and pass it along. For
applications in which delay constraints do not allow for
retransmission (for example, voice communication).

forward error correction (FEC) (Attempt to) correct the
errors in the received word.
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Weight and Distance (1)

The (Hamming) weight of a word c, denoted by w(c) (or
wH(c)), is the number of nonzero coordinates in c.

Example. w((0, α3, 1, α)) = 3, w(0001) = 1.

The Euclidean distance between v = (v0, v1, . . . , vn−1) and
w = (w0, w1, . . . , wn−1) is

dE(v,w) =
√

(v0 − w0)2 + (v1 − w1)2 + · · · + (vn−1 − wn−1)2.
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Weight and Distance (2)

The Hamming distance between two words,
v = (v0, v1, . . . , vn−1) and w = (w0, w1, . . . , wn−1), is the number of
coordinates in which they differ, that is,

dH(v,w) = |{i | vi 6= wi, 0 ≤ i ≤ n − 1}|,

where the subscript H is often omitted. Note that w(c) = d(0, c),
where 0 is the all-zero vector, and d(v,w) = w(v − w).

The minimum distance of a block code C is the minimum
Hamming distance between all pairs of distinct codewords in C.
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Minimum Distance and Error Detection

Let dmin denote the minimum distance of the code in use. For an
error pattern to be undetectable, it must change the values in at
least dmin coordinates.

B A code with minimum distance dmin can detect all error
patterns of weight less than dmin.

Obviously, a large number of error patterns of weight w ≥ dmin can
also be detected.
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Forward Error Correction

The goal in FEC systems is to minimize the probability of decoder
error given a received word r. If we know exactly the behavior of
the communication system and channel, we can derive the
probability p(c | r) that c is transmitted upon receipt of r.

maximum a posteriori decoder (MAP decoder) Identifies the
codeword ci that maximizes p(c = ci | r).

maximum likelihood decoder (ML decoder) Identifies the
codeword ci that maximizes p(r | c = ci).

Bayes’s rule p(c | r) = pC(c)p(r|c)
pR(r) .
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Minimum Distance and Error Correction

The two decoders are identical when pC(c) is constant, that is,
when all codewords occur with the same probability. The
maximum likelihood decoder is assumed in the sequel.

The probability p(r | c) equals the probability of the error pattern
e = r − c. Small-weight error patterns are more likely to occur
than high-weight ones ⇒ we want to find a codeword that
minimizes w(e) = w(r− c).

B A code with minimum distance dmin can correct all error
patterns of weight less than or equal to b(dmin − 1)/2c.

It is sometimes possible to to correct errors with
w > b(dmin − 1)/2c.
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Decoder Types

A complete error-correcting decoder is a decoder that, given a
received word r, selects a codeword c that minimizes d(r, c).

Given a received word r, a t-error-correcting bounded-distance
decoder selects the (unique) codeword c that minimizes d(r, c) iff
d(r, c) ≤ t. Otherwise, a decoder failure is declared.

Question. What is the difference between decoder errors and
decoder failures in a bounded-distance decoder?
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Example: A Binary Repetition Code

The binary repetition code of length 4 is {0000, 1111}.

Received Selected Received Selected

0000 0000 1000 0000
0001 0000 1001 0000 or 1111∗
0010 0000 1010 0000 or 1111∗
0011 0000 or 1111∗ 1011 1111
0100 0000 1100 0000 or 1111∗
0101 0000 or 1111∗ 1101 1111
0110 0000 or 1111∗ 1110 1111
0111 1111 1111 1111

∗Bounded-distance decoder declares decoder failure.
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Error-Correcting Codes and a Packing Problem

A central problem related to the construction of error-correcting
codes can be formulated in several ways:

1. With a given length n and minimum distance d, and a
given field GF(q), what is the maximum number Aq(n, d)
of codewords in such a code?

2. What is the minimum redundancy for a t-error-correcting
q-ary code of length n ?

3. What is the maximum number of spheres of radius t that
can be packed in an n-dimensional vector space over GF(q)
?
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The Hamming Bound

The number of words in a sphere of radius t in an n-dimensional
vector space over GF(q) is

Vq(n, t) =
t∑

i=0


 n

i


(q − 1)i.

Theorem 4-1. The size of a t-error-correcting q-ary code of length
n is

M ≤ qn

Vq(n, t)
.
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The Gilbert Bound

Theorem 4-2. There exists a t-error-correcting q-ary code of
length n of size

M ≥ qn

Vq(n, 2t)
.

Proof: Repeatedly pick any word c from the space, and after each
such operation, delete all words w that satisfy d(c,w) ≤ 2t from
further consideration. Then the final code will have minimum
distance at least 2t + 1 and will be t-error-correcting. The theorem
follows from the fact that at most Vq(n, 2t) words are deleted from
further consideration in each step. �
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Comparing Bounds

Theorems 4-1 and 4-2 say that for the redundancy r of a code,

logq Vq(n, t) ≤ r ≤ logq Vq(n, 2t).

These bounds for binary 1-error-correcting codes are compared in
[Wic, Fig. 4-3].
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Perfect Codes

A block code is perfect if it satisfies the Hamming bound with
identity.

Theorem 4-4. Any nontrivial perfect code over GF(q) must have
the same length and cardinality as a Hamming, Golay, or repetition
code.

Note: The sphere packing problem and the error control problem
are not entirely equivalent.
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List of Perfect Codes

1. (q, n, k = n, t = 0), (q, n, k = 0, t = n): trivial codes.
2. (q = 2, n odd, k = 1, t = (n − 1)/2): odd-length binary

repetition codes (trivial codes).
3. (q, n = (qm − 1)/(q − 1), k = n − m, t = 1) with m > 0 and

q a prime power: Hamming codes and and nonlinear codes
with the same parameters.

4. (q = 2, n = 23, k = 12, t = 3): the binary Golay code.
5. (q = 3, n = 11, k = 6, t = 2): the ternary Golay code.

Research Problem. Are there other perfect codes over alphabets
that are not fields (where q is not a prime power)?
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Definitions

With bit error probability p and n bits, there are on average np

errors ⇒ if the code length n is allowed to increase, the minimum
distance dmin must increase accordingly. Let

δ =
dmin

n
,

a(δ) = lim sup
n→∞

[
logq Aq(n, bδnc)

n

]
,

where a(δ) is the maximum possible code rate that a code can have
if it is to maintain a minimum distance/length ratio δ as its length
increases without bound.
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Some Bounds

The entropy function:
Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) for
0 < x ≤ (q − 1)/q.

The Gilbert-Varshamov (lower) bound: If 0 ≤ δ ≤ (q − 1)/q, then
a(δ) ≥ 1 − Hq(δ).

The McEliece-Rodemich-Rumsey-Welch (upper) bound:
a(δ) ≤ H2(1/2 − √

δ(1 − δ)).

Bounds for the binary case are plotted in [Wic, Fig. 4-4].
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Linear Block Codes

A q-ary code C is said to be linear if it forms a vector subspace
over GF(q). The dimension of a linear code is the dimension of the
corresponding vector space.

A q-ary linear code of length n and dimension k (which then has qk

codewords) is called an (n, k) code (or an [n, k] code).

Linear block codes have a number of interesting properties.
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Properties of Linear Codes

Property One The linear combination of any set of codewords is
a codeword (⇒ the all-zero word is a codeword).

Property Two The minimum distance of a linear code C is equal
to the weight of the codeword with minimum weight (because
d(c, c′) = w(c− c′) = w(c′′) for some c′′ ∈ C).

Property Three The undetectable error patterns for a linear
code are independent of the codeword transmitted and always
consist of the set of all nonzero codewords.
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Generator Matrix

Let {g0,g1, . . . ,gk−1} be a basis of the codewords of an (n, k) code
C over GF(q). By Theorem 2-6, every codeword c ∈ C can be
obtained in a unique way as a linear combination of the words gi.
The generator matrix G of such a linear code is

G =




g0

g1

...

gk−1




=




g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

...
...

. . .
...

gk−1,0 gk−1,1 · · · gk−1,n−1




,

and a data block m = (m0, m1, . . . , mk−1) is encoded as mG.
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Parity Check Matrix

The dual space of a linear code C is called the dual code and is
denoted by C⊥. Clearly, dim(C⊥) = n − dim(C) = n − k, and it
has a basis with n − k vectors. These form the parity check
matrix of C:

H =




h0

h1

...

hn−k−1




=




h0,0 h0,1 · · · h0,n−1

h1,0 h1,1 · · · h1,n−1

...
...

. . .
...

hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1




.
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The Parity Check Theorem

Theorem 4-8. A vector c is in C iff cHT = 0.

Proof: (⇒) Given a vector c ∈ C, c • h = 0 for all h ∈ C⊥ by the
definition of dual spaces.
(⇐) If cHT = 0, then c ∈ (C⊥)⊥, and the result follows as
(C⊥)⊥ = C, which in turn holds as C ⊆ (C⊥)⊥ and
dim(C) = dim((C⊥)⊥). �
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Parity Check Matrix and Minimum Distance

Theorem 4-9. The minimum distance of a code C with parity
check matrix H is the minimum nonzero number of columns that
has a nontrivial linear combination with zero sum.

Proof: If the column vectors of H are {d0,d1, . . . ,dn−1} and
c = (c0, c1, . . . , cn−1), we get
cHT = c[d0 d1 · · · dn−1]T = c0d0 + c1d1 + · · · + cn−1dn−1, so
cHT = 0 is a linear combination of w(c) columns of H. �
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Singleton Bound

Theorem 4-10. The minimum distance dmin of an (n, k) code is
bounded by dmin ≤ n − k + 1.

Proof: By definition, any r + 1 columns of a matrix with rank r

are linearly dependent. A parity check matrix of an (n, k) code has
rank n − k, so any n − k + 1 columns are linearly dependent, and
the theorem follows by using Theorem 4-9. �
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