Implementing Linear Codes

With linear codes and their generator and parity check matrices, encoding and decoding can be carried out by operating on these matrices (instead of handling complete lists of possible codewords). Very large codes can therefore be handled.

The problem of recovering the data block from a codeword can be greatly simplified through the use of systematic codes.

Systematic Codes (2)

The corresponding parity check matrix for systematic codes is $\mathbf{H}=\left[\mathbf{I}_{n-k} \mid-\mathbf{P}^{T}\right]=$

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & -p_{0,0} & -p_{1,0} & \cdots & -p_{k-1,0} \\
0 & 1 & \cdots & 0 & -p_{0,1} & -p_{1,1} & \cdots & -p_{k-1,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & -p_{0, n-k-1} & -p_{1, n-k-1} & \cdots & -p_{k-1, n-k-1}
\end{array}\right]
$$

${ }^{(C)}$ Patric Östergård
(C)Patric Östergård

Systematic Codes (1)

Using Gaussian elimination and column reordering it is always possible to get a generator matrix of the form
$\mathbf{G}=\left[\mathbf{P} \mid \mathbf{I}_{k}\right]=\left[\begin{array}{cccc|cccc}p_{0,0} & p_{0,1} & \cdots & p_{0, n-k-1} & 1 & 0 & \cdots & 0 \\ p_{1,0} & p_{1,1} & \cdots & p_{1, n-k-1} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k-1,0} & p_{k-1,1} & \cdots & p_{k-1, n-k-1} & 0 & 0 & \cdots & 1\end{array}\right]$
so that the data block is embedded in the last k coordinates of the codeword: $\left.\left.\mathbf{c}=\mathbf{m G}=\left[\begin{array}{lll}m_{0} m_{1} \cdots & \left.m_{k-1}\right]\end{array}\right] \mathbf{P} \right\rvert\, \mathbf{I}_{k}\right]=$ $\left[c_{0} c_{1} \cdots c_{n-k-1} \mid m_{0} m_{1} \cdots m_{k-1}\right]$.

Standard Array Decoder (1)

A received word \mathbf{r} is modeled by the summation $\mathbf{r}=\mathbf{c}+\mathbf{e}$, where \mathbf{c} is the transmitted codeword and \mathbf{e} is the error pattern induced by the channel noise. The maximum likelihood decoder picks a codeword \mathbf{c}^{\prime} such that $\mathbf{r}=\mathbf{c}^{\prime}+\mathbf{e}^{\prime}$, where \mathbf{e}^{\prime} has the smallest possible weight. A look-up table called a standard array decoder can be used to implement this process.

Standard Array Decoder (2)

Consider all words in V_{q}^{n} in the following way:

1. Remove all codewords in C from V_{q}^{n}. List these in a single row, starting with the all-zero word.
2. Select (and remove) one of the remaining words of the smallest weight and write it in the column under the all-zero word. Add this word to all other codewords and write the results in the corresponding columns (and remove these from the set of remaining words).
3. With no remaining words, stop; otherwise, repeat Step 2.
\triangleright Each row in the table is a coset of C.

Properties of Standard Arrays

\triangleright The standard array is uniquely determined exactly when the code is perfect.
\triangleright A standard array for a q-ary code of length n has q^{n} entries, all of which are stored in memory.
\triangleright A standard array can be used only for small codes.
The next method to be presented reduces the entry table from size q^{n} to q^{n-k}.

Syndrome Vectors

Example: Standard Array for a Small Code

With $\mathbf{G}=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$, one possible standard array is

0000	1010	1101	0111
0001	1011	1100	0110
0010	1000	1111	0101
0100	1110	1001	0011

Example: Syndrome Table for a Small Code

The code used in the previous example has $\mathbf{H}=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right]$

Error pattern	Syndrome
0000	00
0001	11
0010	10
0100	01

If $\mathbf{r}=1111$ is received, then $\mathbf{s}=\mathbf{r H}^{T}=10$, so $\mathbf{e}=0010$ and $\mathbf{c}=1101$.
(C) Patric Östergård

Weight Distribution of a Block Code

The weight distribution of an (n, k) code C is a series of coefficients $A_{0}, A_{1}, \ldots, A_{n}$, where A_{i} is the number of codewords of weight i in C.

The weight distribution is often written as a polynomial $A(x)=A_{0}+A_{1} x+\cdots+A_{n} x^{n}$. This representation is called the weight enumerator.

The MacWilliams Identity: Let $A(x)$ and $B(x)$ be the weight enumerators for an (n, k) code C and its $(n, n-k)$ dual code C^{\perp}. Then

$$
B(x)=2^{-k}(1+x)^{n} A\left(\frac{1-x}{1+x}\right)
$$

Binary Hamming Codes

The binary Hamming codes are $\left(n=2^{m}-1, k=2^{m}-m-1\right)$ perfect one-error-correcting codes for any integer $m \geq 2$.

The columns of a parity check matrix (of size $m \times n$) of a binary Hamming code consist of all $2^{m}-1$ nonzero vectors of length m. The smallest number of such vectors that sum to zero is three \Rightarrow the minimum distance is $d=3$.

Question. Prove that these codes are indeed perfect.
(C)Patric Östergård

Decoding Hamming Codes

A received word corrupted by a single error in position i gives $\mathbf{s}=\mathbf{r} \mathbf{H}^{T}=\mathbf{d}_{i}^{T}$, where \mathbf{d}_{i} is the i th column \mathbf{H}.

Decoding algorithm for Hamming code:

1. Compute the syndrome $\mathbf{s}=\mathbf{r} \mathbf{H}^{T}$.
2. Find the column \mathbf{d}_{i} of \mathbf{H} that matches the syndrome.
3. Complement the i th bit in the received word.

If the columns of \mathbf{H} are in lexicographic order, the decimal value of the syndrome gives the position of the error (with the coordinates numbered $1,2, \ldots, n=2^{m}-1$).

Weight Enumerator for Hamming Codes

The weight enumerator for the (n, k) binary Hamming code is

$$
A(x)=\frac{(1+x)^{n}+n(1-x)\left(1-x^{2}\right)^{(n-1) / 2}}{n+1}
$$

For example, for the $(15,11)$ binary Hamming code we get $A(x)=1+35 x^{3}+105 x^{4}+168 x^{5}+280 x^{6}+435 x^{7}+435 x^{8}+$ $280 x^{9}+168 x^{10}+105 x^{11}+35 x^{12}+x^{15}$.

Question. Why is $A_{i}=A_{15-i}$ in this formula?
The weight enumerator can be used to calculate exact probabilities of undetected error and decoder error as a function of the binary symmetric channel crossover probability; see [Wic, Fig. 4-9].
(C) Patric Östergård

Nonbinary Hamming Codes

Hamming codes over $\mathrm{GF}(q)$ are
$\left(n=\left(q^{m}-1\right) /(q-1), k=\left(q^{m}-1\right) /(q-1)-m\right)$ perfect
one-error-correcting codes for any integer $m \geq 2$.
The column vectors of a parity check matrix (of size $m \times n$) of such a code are selected from the set of $q^{m}-1$ nonzero vectors of length m. Since for each such m-tuple, there are $q-1$ other m-tuples that are multiples of that m-tuple, exactly one m-tuple is selected from each such set of multiples. For example, over GF(3),
$(1,2,0)+(1,2,0)=(2,1,0)$.

Modified Codes

puncturing Delete one of the redundant coordinates. An (n, k) codes becomes an $(n-1, k)$ code.
extending Add an additional redundant coordinate. An (n, k) code becomes an $(n+1, k)$.
shortening Delete a message coordinate. An (n, k) code becomes an $(n-1, k-1)$.
lengthening Add a message coordinate. An (n, k) code becomes an $(n+1, k+1)$ code.

These and two additional terms are illustrated in [Wic, Fig. 4-10].
${ }^{\text {© }}$ Patric Östergård

Linear Cyclic Block Codes (1)

A (linear or nonlinear) code C of length n is said to be cyclic if for every codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, there is also a codeword $\mathbf{c}^{\prime}=\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right) \in C$.

The code polynomial of a codeword $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$ is $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$. We know that if C is a q-ary (n, k) code, then the codewords form a vector subspace of dimension k within the space of all n-tuples over $\operatorname{GF}(q)$.

Linear Cyclic Block Codes (2)

Let C be a cyclic code, and let $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ and \mathbf{c}^{\prime} be two codewords such that \mathbf{c}^{\prime} is obtained by a right cyclic shift of \mathbf{c}. Then

$$
\begin{aligned}
x \cdot c(x) & =x \cdot\left(c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}\right) \\
& =c_{0} x+c_{1} x^{2}+\cdots+c_{n-1} x^{n} \\
& \equiv c_{n-1}+c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1}\left(\bmod x^{n}-1\right) \\
& \equiv c^{\prime}(x)\left(\bmod x^{n}-1\right) .
\end{aligned}
$$

Now $x^{t} c(x) \bmod \left(x^{n}-1\right)$ corresponds to a shift of t places to the right. In general, $a(x) c(x) \bmod \left(x^{n}-1\right)$, where $a(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in \mathrm{GF}(q)[x] /\left(x^{n}-1\right)$ is an arbitrary polynomial, is a linear combination of cyclic shifts of \mathbf{c} and is a codeword.
${ }^{(C)}$ Patric Östergård

Cyclic Codes and Ideals

We have that $a(x) c(x) \in C$ for all $a(x) \in \mathrm{GF}(q)[x] /\left(x^{n}-1\right)$, $c(x) \in C$.
\triangleright A cyclic code is an ideal within $\operatorname{GF}(q)[x] /\left(x^{n}-1\right)$ and vice versa.

Properties of Cyclic Codes

Let C be a q-ary (n, k) linear cyclic code.

1. Within the set of code polynomials in C there is a unique monic polynomial $g(x)$ with minimal degree $r<n$ called the generator polynomial of C.
2. Every codeword polynomial $c(x) \in C$ can be expressed uniquely as $c(x)=m(x) g(x) \bmod \left(x^{n}-1\right)$, where $m(x) \in \mathrm{GF}(q)[x]$ is a polynomial of degree less than $n-r$.
3. The generator polynomial $g(x)$ of C is a factor of $x^{n}-1$ in $\mathrm{GF}(q)[x]$.

Since $g(x)$ is monic, $g(x)=g_{0}+g_{1} x+\cdots+g_{r-1} x^{r-1}+x^{r}$.
Question. Why can we assume that $g_{0} \neq 0$?
(C) Patric Östergård

Possible Dimensions of Cyclic Codes (1)

The dimension of a cyclic code C is is $n-r$, where r is the degree of the generator polynomial of C. The factorization of $x^{n}-1$ into irreducible polynomials in $\operatorname{GF}(q)[x]$ has been discussed earlier.

Example 1. Binary cyclic codes of length $n=15\left(=2^{4}-1\right)$. The conjugacy classes formed by the powers of α, an element of order 15 in GF (16) are
\{1\},
$\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$,
$\left\{\alpha^{3}, \alpha^{6}, \alpha^{12}, \alpha^{9}\right\}$,
$\left\{\alpha^{5}, \alpha^{10}\right\}$,
$\left\{\alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}\right\}$.

Possible Dimensions of Cyclic Codes (2)

Example 1. (cont.) Hence, the binary polynomial $x^{15}-1$ factors into one binary polynomial of degree 1 , one of degree 2 , and three of degree 4 . Therefore $x^{15}-1$ has factors of all degrees between 1 and 15 (for example, $11=4+4+2+1$), and there are binary cyclic $(15, k)$ codes for all $1 \leq k \leq 15$.

Example 2. In a previous lecture, it was shown that the binary polynomial $x^{25}-1$ factors into one polynomial of degree one, one of degree 4 and one of degree 20. Hence there are binary cyclic $(25, k)$ codes for $k \in\{1,4,5,20,21,24,25\}$.
${ }^{(C)}$ Patric Östergård

Encoding Cyclic Codes (1)

Let $g(x)$ be the degree r generator polynomial for an $(n, k) q$-ary cyclic code C. An $(n-r)$-symbol data block $\left(m_{0}, m_{1}, \ldots, m_{n-r-1}\right)$ is associated with a message polynomial

$$
m(x)=m_{0}+m_{1} x+\cdots+m_{n-r-1} x^{n-r-1} . \text { Now }
$$

$$
\begin{aligned}
c(x) & =m(x) g(x) \\
& =m_{0} g(x)+m_{1} x g(x)+\cdots+m_{n-r-1} x^{n-r-1} g(x) \\
& =\left[m_{0} m_{1} \cdots m_{n-r-1}\right]\left[\begin{array}{c}
g(x) \\
x g(x) \\
\vdots \\
x^{n-r-1} g(x)
\end{array}\right]
\end{aligned}
$$

Encoding Cyclic Codes (2)

A generator matrix for a cyclic code is then

$$
\mathbf{G}=\left[\begin{array}{lllllll}
g_{0} & g_{1} & \cdots & g_{r} & & & \\
& g_{0} & g_{1} & \cdots & g_{r} & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & g_{0} & g_{1} & \cdots & g_{r}
\end{array}\right]
$$

where the unmarked entries are zero.
(C) Patric Östergård

Decoding Cyclic Codes (1)

Since $g(x) \mid\left(x^{n}-1\right)$, there exists a parity polynomial $h(x)$ such that $g(x) h(x)=x^{n}-1$. Moreover, since $g(x) \mid c(x)$, we have that $c(x) h(x) \equiv 0\left(\bmod x^{n}-1\right)$. We denote
$s(x):=c(x) h(x) \bmod \left(x^{n}-1\right)$ with
$s(x)=s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1} \in \operatorname{GF}(q)[x] /\left(x^{n}-1\right)$. Now

$$
\begin{aligned}
s(x) & =\sum_{t=0}^{n-1} s_{t} x^{t} \equiv c(x) h(x) \equiv\left(\sum_{i=0}^{n-1} c_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} h_{j} x^{j}\right) \\
& \equiv 0 \bmod \left(x^{n}-1\right) \Rightarrow \\
s_{t} & =\sum_{i=0}^{n-1} c_{i} h_{(t-i) \bmod n}
\end{aligned}
$$

Decoding Cyclic Codes (2)

Example: Binary Cyclic Code of Length 7 (1)

Take the last $(n-k)$ of the parity check equations:

$$
\mathbf{s}^{\prime}=\left[\begin{array}{c}
s_{k} \\
s_{k+1} \\
\vdots \\
s_{n-1}
\end{array}\right]^{T}=\left[\begin{array}{c}
\sum_{i=0}^{n-1} c_{i} h_{(k-i) \bmod n} \\
\sum_{i=0}^{n-1} c_{i} h_{(k+1-i) \bmod n} \\
\vdots \\
\sum_{i=0}^{n-1} c_{i} h_{(n-1-i) \bmod n}
\end{array}\right]^{T}=
$$

$\left[c_{0} c_{1} \cdots c_{n-1}\right]\left[\begin{array}{ccccccc}h_{k} & h_{k-1} & \cdots & h_{0} & & & \\ & h_{k} & h_{k-1} & \cdots & h_{0} & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & h_{k} & h_{k-1} & \cdots & h_{0}\end{array}\right]^{T}=\mathbf{c H}^{T}$.

$$
\begin{array}{lll}
\{1\} & \leftrightarrow & x+1, \\
\left\{\alpha, \alpha^{2}, \alpha^{4}\right\} & \leftrightarrow & x^{3}+x+1, \\
\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\} & \leftrightarrow & x^{3}+x^{2}+1 .
\end{array}
$$

The polynomial $g(x)=\left(x^{3}+x+1\right)(x+1)=x^{4}+x^{3}+x^{2}+1$ is one possible generator polynomial. The corresponding parity polynomial is $h(x)=\left(x^{7}+1\right) / g(x)=x^{3}+x^{2}+1$.
${ }^{(C)}$ Patric Östergård
${ }^{\text {© }}$ Patric Östergård

Decoding Cyclic Codes (3)

Example: Binary Cyclic Code of Length 7 (2)

(cont.) The message polynomials consist of all binary polynomials of degree less than or equal to 2 . The code is a $(7,3)$ code (with $2^{3}=8$ words). A codeword of the code is, for example, $\left(x^{2}+1\right) \cdot g(x)=1+x^{3}+x^{5}+x^{6} \rightarrow 1001011$. The following matrices are, respectively, a generator matrix and a parity check matrix of the code:
$\mathbf{G}=\left[\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right], \mathbf{H}=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$

