
S-72.3410 Cyclic Codes 1'

&

$

%

Systematic Cyclic Codes

Polynomial multiplication encoding for cyclic linear codes is easy.

Unfortunately, the codes obtained are in most cases not systematic.

Systematic cyclic codes can be obtained through a procedure that

is only slightly more complicated than the polynomial

multiplication procedure.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 2'

&

$

%

Systematic Encoding

Consider an (n, k) cyclic code C with generator polynomial g(x).

The k-symbol message block is given by the message polynomial

m(x).

Step 1. Multiply the message polynomial m(x) by xn−k.

Step 2. Divide the result of Step 1 by the generator polynomial

g(x). Let d(x) be the remainder.

Step 3. Set c(x) = xn−km(x) − d(x).

This encoding works, as (1) c(x) is a multiple of g(x) and therefore

a codeword, (2) the first n − k coefficients of xn−km(x) are zero,

and (3) only the first n − k coefficients of −d(x) are nonzero (the

degree of g(x) is n − k).

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 3'

&

$

%

Example: Systematic Encoding (1)

We consider the (7, 3) binary cyclic code with generator polynomial

g(x) = x4 + x3 + x2 + 1 discussed in a previous example, and

encode 101 = 1 + x2 = m(x).

Step 1. xn−km(x) = x4(x2 + 1) = x6 + x4.

Step 2. x6 + x4 = (x4 + x3 + x2 + 1)(x2 + x + 1) + (x + 1), so

d(x) = x + 1 (Carry out the necessary division in the same way

as you learnt in elementary school!).

Step 3. c(x) = x6 + x4 − (x + 1) = 1 + x + x4 + x6, and the

transmitted codeword is 1100101.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 4'

&

$

%

Example: Systematic Encoding (2)

The systematic generator matrix is obtained by selecting as rows

the codewords associated with the messages 100, 010, and 001. The

parity check matrix is obtained using the basic result (presented

earlier) that H = [In−k | −PT] with G = [P | Ik]. In the current

example, we get

G =







1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1







, H =










1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1










.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 5'

&

$

%

Implementations of Cyclic Codes

Data rates are very high in many applications ⇒

only very fast decoders and encoders can be used.

Fast circuits are, for example, simple exclusive OR (XOR) gates,

switches, and shift registers. For nonbinary encoders and decoders,

finite-field adder and multiplier circuits are needed. We now focus

on shift-register (SR) encoders and decoders for cyclic codes.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 6'

&

$

%

Operational Elements in Shift Registers

The symbology used is depicted in [Wic, Fig. 5-1].

half-adder Adds the input values without carry. In the binary

case, XOR.

SR cell Flip-flops. In the binary case, one.

fixed multiplier Multiplies the input value with a given value. In

the binary case, existence or absence of connection.

In the nonbinary case, we assume that the field is a binary

extension field: GF(pm) with p = 2. The circuits are substantially

more complicated when p 6= 2.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 7'

&

$

%

Addition and SRs in Extension Fields

Elements α, β ∈ GF(2m) are represented as binary m-tuples

(a0, a1, . . . , am−1) and (b0, b1, . . . , bm−1), respectively.

Then the addition of α and β gives

(a0 + b0, a1 + b1, . . . , am−1 + bm−1), where + is binary addition.

The nonbinary addition circuit is shown in [Wic, Fig. 5-2].

The non-binary shift-register cells are implemented with one

flip-flop for each coordinate in the m-tuple; see [Wic, Fig. 5.4].

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 8'

&

$

%

Multiplication in Extension Fields

As an example, we consider multiplication in GF(24) of an arbitrary

value β = b0 + b1α + b2α
2 + b3α

3 by a fixed value g = 1 + α, where

α is a root of the primitive polynomial x4 + x + 1. Then

β · g = (b0 + b1α + b2α
2 + b3α

3)(1 + α)

= b0 + (b0 + b1)α + (b1 + b2)α
2 + (b2 + b3)α

3 + b3α
4

= b0 + (b0 + b1)α + (b1 + b2)α
2 + (b2 + b3)α

3 + b3(α + 1)

= (b0 + b3) + (b0 + b1 + b3)α + (b1 + b2)α
2 + (b2 + b3)α

3.

The corresponding multiplier circuit is illustrated in [Wic, Fig. 5-3].

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 9'

&

$

%

Nonsystematic Encoders

With message polynomial m(x) = m0 + m1x + · · · + mk−1x
k−1 and

generator polynomial g(x), the codeword polynomial is

c(x) = m(x)g(x)

= m0g(x) + m1xg(x) + · · · + mk−1x
k−1g(x).

The corresponding SR circuit is shown in [Wic, Fig. 5-5].

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 10'

&

$

%

Systematic Encoders

Step 1. (Multiply m(x) by xn−k.) Easy, shown in [Wic, Fig. 5-8].

Step 2. (Divide the result of Step 1 by g(x), and let d(x) be the

remainder.) Polynomial division is carried out through the use

of a linear feedback shift register (LFSR) as shown in [Wic,

Fig. 5-9], where a(x) is divided by g(x), and q(x) and d(x) are

the quotient and remainder, respectively.

Step 3. (Set c(x) = xn−km(x)− d(x).) Achieved by combining the

two SR circuits for the previous steps, as shown in [Wic, Fig.

5-12].

An alternative encoder for cyclic codes, not considered here, is

presented in [Wic, Fig. 5-13].

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 11'

&

$

%

Error Detection for Systematic Codes

The transmitted codeword of a systematic cyclic code has the form

c = (c0, c1, . . . , cn) = (−d0,−d1, . . . ,−dn−k−1
︸ ︷︷ ︸

remainder block

, m0, m1, . . . , mk−1
︸ ︷︷ ︸

message block

).

Error detection is performed on a received word r as follows.

1. Denote the values in the message and parity positions of

the received word r by m and d, respectively.

2. Encode m using an encoder identical to that used by the

transmitter, and denote the remainder block obtained in

this way by d′.

3. Compare d with d′. If they are different, then the received

word contains errors.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 12'

&

$

%

Syndrome Computation for Systematic Codes

Denote the received word by r with m and d in the message and

parity positions, respectively. Let d′ be a valid parity block of

message m (cf. previous slide), and denote this valid word by r′.

s = rHT

= (r − r′)HT (as r′HT = 0)

= (d0 − d′
0, d1 − d′

1, . . . , dn−k−1 − d′
n−k−1

︸ ︷︷ ︸

d−d′

, 0, 0, . . . , 0)HT

= d− d′,

since the parity check matrix has the form H = [In−k | −PT].

Syndromes for nonsystematic codes can also be computed through

the use of shift registers.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 13'

&

$

%

Error-Correction Approaches

Error correction has earlier been discussed for general linear codes.

⊲ A standard array has qn entries.

⊲ A syndrome table has qn−k entries.

⊲ We shall see that the number of entries of a syndrome table

for cyclic linear codes can be reduced to approximatively

qn−k/n.

⊲ With more (algebraic) structure of the codes, even more

powerful decoding is possible (to be discussed in

forthcoming lectures).

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 14'

&

$

%

Syndrome Decoding for Cyclic Codes

Theorem 5-3. Let s(x) be the syndrome polynomial

corresponding to a received polynomial r(x). Let ri(x) be the

polynomial obtained by cyclically shifting the coefficients of r(x) i

steps to the right. Then the remainder obtained when dividing

xs(x) by g(x) is the syndrome s1(x) corresponding to r1(x).

Having computed the syndrome s with an SR division circuit, we

get si(x) after the input of i 0s into the circuit! We then need only

store one syndrome s for an error pattern e and all cyclic shifts of e.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 15'

&

$

%

Decoding Algorithm for Cyclic Codes

1. Let i := 0. Compute the syndrome s for a received vector r.

2. If s is in the syndrome look-up table, goto Step 6.

3. Let i := i + 1. Enter a 0 into the SR input, computing si.

4. If si is not in the syndrome look-up table, goto Step 3.

5. Let ei be the error pattern corresponding to the syndrome

si. Determine e by cyclically shifting ei i times to the left.

6. Let c := r − e. Output c.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 16'

&

$

%

Example: Error Correction of (7,4) Cyclic Code

Consider the (7,4) binary cyclic code generated by

g(x) = x3 + x + 1, with parity check polynomial

h(x) = (x7 + 1)/g(x) = x4 + x2 + x + 1, and with parity check

matrix

H =







1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1







.

This is a one-error-correcting Hamming code, so all correctable

error patterns are cyclic shifts of 0000001. An SR error-correction

circuit for this code is displayed in [Wic, Fig. 5-14].

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 17'

&

$

%

Error Detection in Practice

The most frequently used error control techniques in the history of

computers and communication networks are:

one-bit parity check Very simple, but yet important.

CRC codes Shortened cyclic codes that have extremely simple

and fast encoder and decoder implementations.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 18'

&

$

%

Properties of CRC Codes

⊲ Cyclic redundancy check (CRC) codes are shortened

cyclic codes obtained by deleting the j rightmost

coordinates in the codewords.

⊲ CRC codes are generally not cyclic.

⊲ CRC codes can have the same SR encoders and decoders as

the original cyclic code.

⊲ CRC codes have error detection and correction capabilities

that are at least as good as those of the original cyclic code.

⊲ CRC codes have good burst-error detection capabilities.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 19'

&

$

%

Some Generator Polynomials

CRC-4 g4(x) = x4 + x3 + x2 + x + 1

CRC-12 g12(x) = (x11 + x2 + 1)(x + 1)

CRC-ANSI gA = (x15 + x + 1)(x + 1)

CRC-CCITT gC = (x15 + x14 + x13 + x12 + x4 + x3 + x2 + x + 1)·

(x + 1)

Example. The polynomial g12(x) divides x2047 − 1 but no

polynomial xm − 1 with smaller degree, so it defines a cyclic code of

length 2047 and dimension 2047 − 12 = 2035. So, CRC-12 encodes

up to 2035 message bits, generating 12 bits of redundancy.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 20'

&

$

%

Error Detection Performance Analysis

The error detection performance of codes depends of the type of

errors. In performance analysis, the following three situations are

most often considered.

1. Total corruption of words.

2. Burst errors. These are errors that occur over several

consecutive transmitted symbols.

3. The binary symmetric channel.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 21'

&

$

%

Total Corruption of Words

When an (n, k) code is used, total corruption leads to a decoder

error with probability

qk

qn
= qk−n.

Note that this probability is solely a function of the number of

redundant symbols in the transmitted codewords.

Example. With CRC-12, an error is detected with probability

1 − 2−12 ≈ 0.999756 in case of total corruption.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 22'

&

$

%

Burst-Error Detection

A burst-error pattern of length b starts and ends with nonzero

symbols; the intervening symbols may be take on any value,

including zero.

Theorems 5-4, 5-5, and 5-6. A q-ary cyclic or shortened cyclic

codes with generator polynomial g(x) of degree r can detect all

burst error patterns of length r or less; the fraction 1− q1−r/(q − 1)

of burst error patterns of length r + 1; and the fraction 1 − q−r of

burst error patterns of length greater than r + 1.

Example. With CRC-12, all bursts of length at most 12, 99.95%

of bursts of length 13, and 99.976% of longer bursts are detected.

c©Patric Österg̊ard

S-72.3410 Cyclic Codes 23'

&

$

%

The Binary Symmetric Channel

An exact determination of the performance of a CRC code over the

binary symmetric channel requires knowledge of the weight

distribution of the code.

c©Patric Österg̊ard

