Example: Systematic Encoding (1)

Systematic Cyclic Codes

Polynomial multiplication encoding for cyclic linear codes is easy. Unfortunately, the codes obtained are in most cases not systematic. Systematic cyclic codes can be obtained through a procedure that is only slightly more complicated than the polynomial multiplication procedure.

We consider the $(7,3)$ binary cyclic code with generator polynomial $g(x)=x^{4}+x^{3}+x^{2}+1$ discussed in a previous example, and encode $101=1+x^{2}=m(x)$.
Step 1. $x^{n-k} m(x)=x^{4}\left(x^{2}+1\right)=x^{6}+x^{4}$.
Step 2. $x^{6}+x^{4}=\left(x^{4}+x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right)+(x+1)$, so $d(x)=x+1$ (Carry out the necessary division in the same way as you learnt in elementary school!').

Step 3. $c(x)=x^{6}+x^{4}-(x+1)=1+x+x^{4}+x^{6}$, and the transmitted codeword is 1100101 .
(C) Patric Östergård
(C) Patric Östergår

Systematic Encoding

Consider an (n, k) cyclic code C with generator polynomial $g(x)$.
The k-symbol message block is given by the message polynomial $m(x)$.

Step 1. Multiply the message polynomial $m(x)$ by x^{n-k}.
Step 2. Divide the result of Step 1 by the generator polynomial $g(x)$. Let $d(x)$ be the remainder.

Step 3. Set $c(x)=x^{n-k} m(x)-d(x)$.
This encoding works, as (1) $c(x)$ is a multiple of $g(x)$ and therefore a codeword, (2) the first $n-k$ coefficients of $x^{n-k} m(x)$ are zero, and (3) only the first $n-k$ coefficients of $-d(x)$ are nonzero (the degree of $g(x)$ is $n-k)$.

Addition and SRs in Extension Fields

Elements $\alpha, \beta \in \mathrm{GF}\left(2^{m}\right)$ are represented as binary m-tuples $\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)$ and $\left(b_{0}, b_{1}, \ldots, b_{m-1}\right)$, respectively.

Then the addition of α and β gives
$\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots, a_{m-1}+b_{m-1}\right)$, where + is binary addition.
The nonbinary addition circuit is shown in [Wic, Fig. 5-2].
The non-binary shift-register cells are implemented with one flip-flop for each coordinate in the m-tuple; see [Wic, Fig. 5.4].
(C) Patric Östergår

Operational Elements in Shift Registers

The symbology used is depicted in [Wic, Fig. 5-1].
half-adder Adds the input values without carry. In the binary case, XOR.

SR cell Flip-flops. In the binary case, one.
fixed multiplier Multiplies the input value with a given value. In the binary case, existence or absence of connection.

In the nonbinary case, we assume that the field is a binary extension field: $\operatorname{GF}\left(p^{m}\right)$ with $p=2$. The circuits are substantially more complicated when $p \neq 2$.

S-72.3410 Cyclic Codes

Multiplication in Extension Fields

As an example, we consider multiplication in $\operatorname{GF}\left(2^{4}\right)$ of an arbitrary value $\beta=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+b_{3} \alpha^{3}$ by a fixed value $g=1+\alpha$, where α is a root of the primitive polynomial $x^{4}+x+1$. Then

$$
\begin{aligned}
\beta \cdot g & =\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+b_{3} \alpha^{3}\right)(1+\alpha) \\
& =b_{0}+\left(b_{0}+b_{1}\right) \alpha+\left(b_{1}+b_{2}\right) \alpha^{2}+\left(b_{2}+b_{3}\right) \alpha^{3}+b_{3} \alpha^{4} \\
& =b_{0}+\left(b_{0}+b_{1}\right) \alpha+\left(b_{1}+b_{2}\right) \alpha^{2}+\left(b_{2}+b_{3}\right) \alpha^{3}+b_{3}(\alpha+1) \\
& =\left(b_{0}+b_{3}\right)+\left(b_{0}+b_{1}+b_{3}\right) \alpha+\left(b_{1}+b_{2}\right) \alpha^{2}+\left(b_{2}+b_{3}\right) \alpha^{3} .
\end{aligned}
$$

The corresponding multiplier circuit is illustrated in [Wic, Fig. 5-3].

Nonsystematic Encoders

Error Detection for Systematic Codes

The transmitted codeword of a systematic cyclic code has the form

$$
\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n}\right)=(\underbrace{-d_{0},-d_{1}, \ldots,-d_{n-k-1}}_{\text {remainder block }}, \underbrace{m_{0}, m_{1}, \ldots, m_{k-1}}_{\text {message block }}) .
$$

Error detection is performed on a received word \mathbf{r} as follows.

1. Denote the values in the message and parity positions of the received word \mathbf{r} by \mathbf{m} and \mathbf{d}, respectively.
2. Encode \mathbf{m} using an encoder identical to that used by the transmitter, and denote the remainder block obtained in this way by \mathbf{d}^{\prime}.
3. Compare \mathbf{d} with \mathbf{d}^{\prime}. If they are different, then the received word contains errors.
(C) Patric Östergår
(C)Patric Östergård

Systematic Encoders

Syndrome Computation for Systematic Codes

Step 1. (Multiply $m(x)$ by x^{n-k}.) Easy, shown in [Wic, Fig. 5-8].
Step 2. (Divide the result of Step 1 by $g(x)$, and let $d(x)$ be the remainder.) Polynomial division is carried out through the use of a linear feedback shift register (LFSR) as shown in [Wic, Fig. 5-9], where $a(x)$ is divided by $g(x)$, and $q(x)$ and $d(x)$ are the quotient and remainder, respectively.

Step 3. (Set $c(x)=x^{n-k} m(x)-d(x)$.) Achieved by combining the two SR circuits for the previous steps, as shown in [Wic, Fig. 5-12].

An alternative encoder for cyclic codes, not considered here, is presented in [Wic, Fig. 5-13].
generator polynomial $g(x)$, the codeword polynomial is

$$
\begin{aligned}
c(x) & =m(x) g(x) \\
& =m_{0} g(x)+m_{1} x g(x)+\cdots+m_{k-1} x^{k-1} g(x)
\end{aligned}
$$

The corresponding SR circuit is shown in [Wic, Fig. 5-5].

S-72.3410 Cyclic Codes

Denote the received word by \mathbf{r} with \mathbf{m} and \mathbf{d} in the message and parity positions, respectively. Let \mathbf{d}^{\prime} be a valid parity block of message \mathbf{m} (cf. previous slide), and denote this valid word by \mathbf{r}^{\prime}.

$$
\begin{aligned}
\mathbf{s} & =\mathbf{r} \mathbf{H}^{T} \\
& =\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \mathbf{H}^{T}\left(\operatorname{as~}^{\prime} \mathbf{r}^{\prime} \mathbf{H}^{T}=\mathbf{0}\right) \\
& =\underbrace{\left(d_{0}-d_{0}^{\prime}, d_{1}-d_{1}^{\prime}, \ldots, d_{n-k-1}-d_{n-k-1}^{\prime}\right.}_{\mathbf{d}-\mathbf{d}^{\prime}}, 0,0, \ldots, 0) \mathbf{H}^{T} \\
& =\mathbf{d}-\mathbf{d}^{\prime},
\end{aligned}
$$

since the parity check matrix has the form $\mathbf{H}=\left[\mathbf{I}_{n-k} \mid-\mathbf{P}^{T}\right]$.
Syndromes for nonsystematic codes can also be computed through the use of shift registers.

Error-Correction Approaches

Error correction has earlier been discussed for general linear codes.
\triangleright A standard array has q^{n} entries.
\triangleright A syndrome table has q^{n-k} entries.
\triangleright We shall see that the number of entries of a syndrome table for cyclic linear codes can be reduced to approximatively q^{n-k} / n.
\triangleright With more (algebraic) structure of the codes, even more powerful decoding is possible (to be discussed in forthcoming lectures).

Decoding Algorithm for Cyclic Codes

1. Let $i:=0$. Compute the syndrome \mathbf{s} for a received vector \mathbf{r}.
2. If \mathbf{s} is in the syndrome look-up table, goto Step 6.
3. Let $i:=i+1$. Enter a 0 into the SR input, computing \mathbf{s}_{i}.
4. If \mathbf{s}_{i} is not in the syndrome look-up table, goto Step 3.
5. Let \mathbf{e}_{i} be the error pattern corresponding to the syndrome \mathbf{s}_{i}. Determine \mathbf{e} by cyclically shifting $\mathbf{e}_{i} i$ times to the left.
6. Let $\mathbf{c}:=\mathbf{r}-\mathbf{e}$. Output \mathbf{c}.
(C) Patric Östergård

Syndrome Decoding for Cyclic Codes

Theorem 5-3. Let $s(x)$ be the syndrome polynomial corresponding to a received polynomial $r(x)$. Let $r_{i}(x)$ be the polynomial obtained by cyclically shifting the coefficients of $r(x) i$ steps to the right. Then the remainder obtained when dividing $x s(x)$ by $g(x)$ is the syndrome $s_{1}(x)$ corresponding to $r_{1}(x)$.

Having computed the syndrome s with an SR division circuit, we get $s_{i}(x)$ after the input of $i 0$ s into the circuit! We then need only store one syndrome \mathbf{s} for an error pattern \mathbf{e} and all cyclic shifts of \mathbf{e}.

Error Detection in Practice

The most frequently used error control techniques in the history of computers and communication networks are:
one-bit parity check Very simple, but yet important.
CRC codes Shortened cyclic codes that have extremely simple and fast encoder and decoder implementations.
(C) Patric Östergård

CRC-4

$$
g_{4}(x)=x^{4}+x^{3}+x^{2}+x+1
$$

CRC-12 $\quad g_{12}(x)=\left(x^{11}+x^{2}+1\right)(x+1)$
CRC-ANSI $\quad g_{A}=\left(x^{15}+x+1\right)(x+1)$
CRC-CCITT $\quad g_{C}=\left(x^{15}+x^{14}+x^{13}+x^{12}+x^{4}+x^{3}+x^{2}+x+1\right)$. $(x+1)$

Example. The polynomial $g_{12}(x)$ divides $x^{2047}-1$ but no polynomial $x^{m}-1$ with smaller degree, so it defines a cyclic code of length 2047 and dimension $2047-12=2035$. So, CRC-12 encodes up to 2035 message bits, generating 12 bits of redundancy.

Properties of CRC Codes

\triangleright Cyclic redundancy check (CRC) codes are shortened cyclic codes obtained by deleting the j rightmost coordinates in the codewords.
\triangleright CRC codes are generally not cyclic.
\triangleright CRC codes can have the same SR encoders and decoders as the original cyclic code.
\triangleright CRC codes have error detection and correction capabilities that are at least as good as those of the original cyclic code.
\triangleright CRC codes have good burst-error detection capabilities.

Total Corruption of Words

When an (n, k) code is used, total corruption leads to a decoder error with probability

$$
\frac{q^{k}}{q^{n}}=q^{k-n} .
$$

Note that this probability is solely a function of the number of redundant symbols in the transmitted codewords.

Example. With CRC-12, an error is detected with probability $1-2^{-12} \approx 0.999756$ in case of total corruption.
(C) Patric Östergård

The Binary Symmetric Channel

An exact determination of the performance of a CRC code over the binary symmetric channel requires knowledge of the weight distribution of the code.

Burst-Error Detection

A burst-error pattern of length b starts and ends with nonzero symbols; the intervening symbols may be take on any value, including zero.

Theorems 5-4, 5-5, and 5-6. A q-ary cyclic or shortened cyclic codes with generator polynomial $g(x)$ of degree r can detect all burst error patterns of length r or less; the fraction $1-q^{1-r} /(q-1)$ of burst error patterns of length $r+1$; and the fraction $1-q^{-r}$ of burst error patterns of length greater than $r+1$.

Example. With CRC-12, all bursts of length at most 12, 99.95\% of bursts of length 13 , and 99.976% of longer bursts are detected.

