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Background

The algebraic structure of linear codes and, in particular, cyclic

linear codes, enables efficient encoding and decoding algorithms

and fast implementations.

BCH (from the names of Bose, Ray-Chaudhuri, and

Hocquenghem) and Reed-Solomon codes are even more powerful

algebraic codes. Reed-Solomon codes can be described as certain

nonbinary BCH codes (they are, however, discussed separately, as

Reed-Solomon codes have some interesting properties that are not

found in other BCH codes).
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Minimum Distance of Cyclic Codes

When constructing an arbitrary cyclic code, there is no guarantee

as to the resulting minimum distance. An exhaustive computer

search is often needed to find the minimum-weight codewords of a

linear code and thereby the minimum distance.

BCH codes, on the other hand, take advantage of a useful result

that ensures a lower bound on the minimum distance given a

particular constraint on the generator polynomial. This result is

known as the BCH bound.
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The BCH Bound

Theorem 8-1. Let C be a q-ary (n, k) cyclic code with generator

polynomial g(x). Let m be the order of q modulo n (GF(qm) is

thus the smallest extension field of GF(q) that contains a primitive

nth root of unity), and let α be a primitive nth root of unity.

Select g(x) to be a minimal-degree polynomial in GF(q)[x] such

that g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0 for some integers b ≥ 0

and δ ≥ 1 (so g(x) has δ − 1 consecutive powers of α as zeros). Now

the code C defined by g(x) has minimum distance dmin ≥ δ.

The parameter δ in this theorem is the design distance of the

BCH code defined by g(x).
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Parity Check Matrix for BCH Code

The following matrix can be used as a parity check matrix for a

BCH code from Theorem 8-1:





















1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
...

...

1 αb+δ−3 α2(b+δ−3) · · · α(n−1)(b+δ−3)

1 αb+δ−2 α2(b+δ−2) · · · α(n−1)(b+δ−2)





















.

(Note: The first column can be written as α0·b, α0·(b+1), . . ..)
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Design Procedure for BCH Codes

To construct a t-error-correcting q-ary BCH codes of length n:

1. Find a primitive nth root of unity α ∈ GF(qm), where m is

minimal.

2. Select δ − 1 = 2t consecutive powers of α, starting with αb

for some nonnegative integer b.

3. Let g(x) be the least common multiple of the minimal

polynomials for the selected powers of α with respect to

GF(q). (Each of the minimal polynomials should appear

only once in the product.)

c©Patric Österg̊ard
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Types of BCH Codes

narrow-sense BCH code with b = 1.

primitive BCH code with n = qm − 1 for some positive integer m

(the nth root of unity α is a primitive element in GF(qm)).

A list of the generator polynomials for binary, narrow-sense,

primitive BCH codes of lengths 7 through 255 can be found in

[Wic, Appendix E].
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Example: Binary BCH Codes of Length 31 (1)

Let α be a root of the primitive polynomial x5 + x2 + 1 ∈ GF(2)[x].

Then α is a primitive element in GF(32), so these BCH codes are

primitive. The cyclotomic cosets and minimal polynomials are

C0 = {0} ↔ M0(x) = x + 1,

C1 = {1, 2, 4, 8, 16} ↔ M1(x) = x5 + x2 + 1,

C3 = {3, 6, 12, 24, 17} ↔ M3(x) = x5 + x4 + x3 + x2 + 1,

C5 = {5, 10, 20, 9, 18} ↔ M5(x) = x5 + x4 + x2 + x + 1,

C7 = {7, 14, 28, 25, 19} ↔ M7(x) = x5 + x3 + x2 + x + 1,

C11 = {11, 22, 13, 26, 21} ↔ M11(x) = x5 + x4 + x3 + x + 1,

C15 = {15, 30, 29, 27, 23} ↔ M15(x) = x5 + x3 + 1.
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Example: Binary BCH Codes of Length 31 (2)

A narrow-sense one-error-correcting code: Now b = 1 and

δ = 3, so g(x) must have α and α2 as zeros. The minimal

polynomial of both α and α2 is M1(x), so the generator polynomial

is

g(x) = LCM(M1(x), M2(x)) = M1(x) = M2(x) = x5 + x2 + 1.

Since deg(g(x)) = 5, the dimension of the code is 31 − 5 = 26, so

g(x) defines a (31, 26) binary single-error-correcting BCH code.
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Example: Binary BCH Codes of Length 31 (3)

A parity check matrix for the constructed code has the following

general form:

H =





1 α · · · α29 α30

1 α2 · · · α27 α29



 .

Since any binary polynomial having α as a zero must also have the

other conjugates as zeros (including α2), the matrix has redundant

rows, so the second row may be deleted.

Note: This code is the binary Hamming code of length 31.
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Example: Binary BCH Codes of Length 31 (4)

A narrow-sense two-error-correcting code: Now b = 1 and

δ = 5, so g(x) must have α, α2, α3, and α4 as zeros. The generator

polynomial is

g(x) = LCM(M1(x), M2(x), M3(x), M4(x)) = M1(x)M3(x)

= (x5 + x2 + 1)(x5 + x4 + x3 + x2 + x + 1)

= x10 + x9 + x8 + x6 + x5 + x3 + 1.

Since deg(g(x)) = 10, the dimension of the code is 31 − 10 = 21, so

g(x) defines a (31, 21) binary double-error-correcting BCH code.
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BCH Codes: Some Remarks

⊲ The true minimum distance may be larger than the design

distance.

⊲ We want to maximize the dimension (and therefore the

rate) with a given minimum distance. Therefore, it is

sometimes worth considering codes that are not

narrow-sense (b > 1).

⊲ The weight distributions for most BCH codes are not

known.

⊲ The weight distributions for all double- and

triple-error-correcting binary primitive BCH codes have

been found.
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Reed-Solomon Codes

Some trends:

1. For a fixed alphabet GF(q), the cardinality of the

cyclotomic cosets modulo n is generally smaller for

primitive codes (n = qm − 1).

2. Large alphabets generally lead to smaller cyclotomic cosets.

BCH codes of length n = q − 1 over GF(q) are called

Reed-Solomon codes.
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Constructing Reed-Solomon Codes

We want to construct a t-error-correcting code of length q − 1 over

GF(q).

1. By Theorem 2-12, there exists a required primitive

(q − 1)th root of unity α in GF(q).

2. We want to construct the cyclotomic cosets modulo q − 1

with respect to GF(q). Since q ≡ 1 (mod q − 1), we have

aqs ≡ a (mod q − 1), so all cyclotomic cosets have one

element {a} and the associated minimal polynomials are of

the form x − αa.

The generator polynomial of a t-error correcting code is then

g(x) = (x − αb)(x − αb+1) · · · (x − αb+2t−1).
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Example: Reed-Solomon Code over GF(8) (1)

Let α be a root of the primitive binary polynomial x3 + x + 1 and

therefore a primitive 7th root of unity. (The elements of GF(8) are

then 0, 1, α, α2, α3 = α + 1, α4 = α2 + α, α5 = α2 + α + 1, and

α6 = α2 + 1.)

We construct a 2-error-correcting code. Then 2t = 4, and a

narrow-sense generator polynomial is

g(x) = (x−α)(x−α2)(x−α3)(x−α4) = x4 + α3x3 + x2 + αx + α3.
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Example: Reed-Solomon Code over GF(8) (2)

Since the generator polynomial has degree 4, we have a (7, 3) code

over GF(8) and the following parity check matrix:

H =















1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3















.
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Minimum Distance of Reed-Solomon Codes

As the following theorem shows, we know the minimum distance of

Reed-Solomon codes!

Theorem 8-2. An (n, k) Reed-Solomon code has minimum

distance n − k + 1.

Proof: Since the generator polynomial g(x) is the product of δ − 1

minimal polynomials of the form x − αa, its degree is δ − 1. As we

also know that the degree of g(x) is n − k, we get that the

minimum distance is at least δ = n − k + 1. The result now follows,

since by the Singleton bound (Theorem 4-10), the minimum

distance is at most n − k + 1. �
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Maximum Distance Separable Codes

An (n, k) code that satisfies the Singleton bound with equality is

called maximum distance separable (MDS). MDS codes have

a number of interesting properties.

⊲ If C is MDS, so is its dual C⊥.

⊲ Any combination of k coordinates in an MDS code may be

used as message coordinates in a systematic representation.

⊲ The weight distribution of MDS codes is known, see

[Wic, Theorem 8-5].

⊲ Punctured and shortened MDS codes are MDS.
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Decoding BCH and Reed-Solomon Codes

The first explicit decoding algorithm for binary BCH codes was

described by Peterson in 1960. Peterson’s algorithm is useful only

for correcting small numbers of errors.

Berlekamp introduced the first truly efficient decoding algorithm

for both binary and nonbinary BCH codes in 1967. This was

further developed by Massey and is usually called the

Berlekamp-Massey decoding algorithm.

These and other decoding algorithms for BCH codes are considered

in [Wic, Ch. 9].
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