
S-72.3410 Convolutional Codes (2) 1'

&

$

%

Performance Measures for Convolutional Codes

Whereas there is one main performance measure for block codes,

minimum distance, there are several possible performance measures

for convolutional codes. The following three are considered here:

1. The column distance function.

2. Minimum distance.

3. Minimum free distance.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 2'

&

$

%

The Column Distance Function (1)

Consider a rate-k/n code C with constraint length K. Let the

input sequence x and the output sequence y for an encoder for C

be truncated at length i:

[x]i = (x
(0)
0 , . . . , x

(k−1)
0 , x

(0)
1 , . . . , x

(k−1)
1 , . . . , x

(0)
i−1, . . . , x

(k−1)
i−1),

[y]i = (y
(0)
0 , . . . , y

(n−1)
0 , y

(0)
1 , . . . , y

(n−1)
1 , . . . , y

(0)
i−1, . . . , y

(n−1)
i−1).

The column distance function (CDF) di is the minimum

Hamming distance between all pairs of output sequences truncated

at length i given that the input sequences differ in the first k bits:

di := min{d([y′]i, [y
′′]i) | [x′]1 6= [x′′]1}.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 3'

&

$

%

The Column Distance Function (2)

If the convolutional code is linear, the CDF can be defined in the

following way:

di := min{w([y]i) | [x]1 6= 0}.

Example. The CDF for the code in [Wic, Fig. 11-1] is shown in

[Wic, Fig. 11-13].

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 4'

&

$

%

Minimum Distance

The minimum distance dmin of a rate-k/n convolutional code

with constraint length K is dK (that is, the CDF evaluated at

i = K).

Example. The minimum distance for the code defined by the

decoder in [Wic, Fig. 11-1] is dmin = d4 = 3.

The parameter dmin is useful for methods that use nK bits of a

received word to decode a single bit.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 5'

&

$

%

Minimum Free Distance (1)

The minimum free distance dfree is the minimum Hamming

distance between all pairs of complete convolutional codewords,

dfree := min{d(y′,y′′) | y′ 6= y′′}

= min{w(y) | y 6= 0}.

The minimum free distance is important in particular for the

Viterbi decoder (to be considered), which uses the entire codeword

to decode a single bit. It can be obtained by finding a cycle of

minimum weight in the encoder graph starting and stopping at S0.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 6'

&

$

%

Minimum Free Distance (2)

Example. The minimum free distance for the code defined by the

decoder in [Wic, Fig. 11-1] is dfree = 6.

This and a previous example show the expected result that better

performance is provided by techniques that use the entire word

instead of nK bits to decode a single bit (dfree = 6 > dmin = 3).

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 7'

&

$

%

Some Results on Distance Parameters

⊲ For noncatastrophic codes, limi→∞ di = dfree.

⊲ Unlike linear block codes, nonsystematic convolutional

codes often offer a higher minimum free distance than

systematic codes of comparable constraint length and rate

(cf. [Wic, Tables 11-1 and 11-2]).

Lists of nonsystematic rate-1/4, rate-1/3, rate-1/2, rate-2/3, and

rate-3/4 convolutional codes with largest possible minimum free

distance for small constraint lengths are listed in

[Wic, Tables 11-3 to 11-7].

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 8'

&

$

%

The Viterbi Decoding Algorithm

• In 1967, Viterbi proposed an algorithm for “asymptotically

optimal” decoding of convolutional codes in memoryless

noise.

• It turned out that the algorithm had been invented in

operations research ten years earlier, when Minty presented

an algorithm for a shortest-route problem.

• The Viterbi algorithm provides both a maximum-likelihood

(ML) and a maximum a posteriori (MAP) decoding

algorithm for convolutional codes.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 9'

&

$

%

Trellis Diagrams

A trellis diagram is an extension of the state diagram of a

convolutional code, which explicitly shows the passage of time.

Example. A rate-1/3 encoder with two memory cells is shown in

[Wic, Fig. 12-1] and its associated state diagram (which has 22 = 4

states) in [Wic, Fig. 12-2]. In [Wic, Fig. 12-3], the state diagram is

extended in time to form a trellis diagram. The edges of the trellis

diagram are labeled with the corresponding output bits.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 10'

&

$

%

Some Properties of Trellis Diagrams (1)

⊲ Every codeword in a convolutional code is associated with

a unique path through the trellis diagram, starting and

stopping at S0.

⊲ With total memory M and maximal memory order m, the

trellis diagram has 2M vertices at each time increment

after time t = m.

⊲ There are 2k edges leaving each vertex. After time t = m,

there are 2k edges entering each vertex.

⊲ Given an input sequence of kL bits, the trellis diagram has

L + m stages, and codewords have n(L + m) bits.

⊲ There are 2kL different paths through a trellis diagram

with L + m stages.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 11'

&

$

%

Some Properties of Trellis Diagrams (2)

Example. The input sequence x = (011) to the encoder in

[Wic, Fig. 12-1] is shown in [Wic, Fig. 12-4]. Since L = 3, n = 3,

and m = 2, the codeword has n(L + m) = 3(3 + 2) = 15 bits and is

y = (000, 111, 000, 001, 110).

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 12'

&

$

%

The Viterbi Algorithm (1)

In a communication system, an information stream x is encoded

into a convolutional codeword y, which is transmitted across a

(noisy) channel. At the receiving end, we want to find a good

estimate y′ of the transmitted word given the received word r.

Analogously to an earlier discussion for block codes,

⊲ a maximum a posteriori (MAP) decoder selects an estimate

y′ that maximizes p(y′ | r),

⊲ a maximum likelihood (ML) decoder selects an estimate y′

that maximizes p(r | y′), and

⊲ these two decoders are identical when the distribution of

the source words {x} is uniform.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 13'

&

$

%

The Viterbi Algorithm (2)

With a rate-k/n convolutional encoder and an input sequence x

composed of L k-bit blocks

x = (x
(0)
0 , x

(1)
0 , . . . , x

(k−1)
0 , x

(0)
1 , x

(1)
1 , . . . , x

(k−1)
1 , . . . , x

(k−1)
L−1),

the output sequence y will consist of L + m n-bit blocks (where m

is the maximal memory order)

y = (y
(0)
0 , y

(1)
0 , . . . , y

(n−1)
0 , y

(0)
1 , y

(1)
1 , . . . , y

(n−1)
1 , . . . , y

(n−1)
L+m−1).

The corrupted word r that arrives at the receiver is

r = (r
(0)
0 , r

(1)
0 , . . . , r

(n−1)
0 , r

(0)
1 , r

(1)
1 , . . . , r

(n−1)
1 , . . . , r

(n−1)
L+m−1)

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 14'

&

$

%

The Viterbi Algorithm (3)

The decoder generates a maximum likelihood estimate

y′ = (y′
0
(0)

, y′
0
(1)

, . . . , y′
0
(n−1)

, y′
1
(0)

, y′
1
(1)

, . . . , y′
1
(n−1)

, . . . , y′
L+m−1
(n−1)

).

We assume that the channel is memoryless, that is, that the noise

process affecting a given bit is independent of the noise process

affecting any other bits. Then

p(r | y′) =

L+m−1
∏

i=0

n−1
∏

j=0

p(r
(j)
i | y′

i

(j)
)

 .

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 15'

&

$

%

The Viterbi Algorithm (4)

For easier calculations, we take the logarithm of the previous

expression (note that logarithms are monotonically increasing and

log xy = log x + log y) and transform it x → a(x + b) to get the

path metric

M(r | y′) =
L+m−1

∑

i=0

n−1
∑

j=0

M(r
(j)
i | y′

i

(j)
)

 ,

where

M(r
(j)
i | y′

i

(j)
) = a[log p(r

(j)
i | y′

i

(j)
) + b].

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 16'

&

$

%

The Viterbi Algorithm (5)

The sth partial path metric is defined as

Ms(r | y′) =
s

∑

i=0

n−1
∑

j=0

M(r
(j)
i | y′

i

(j)
)

 .

Until we reach the point in the trellis where more than one path

enters each node, we assign to a node the value Ms(r | y′) of the

only possible path. From that point on, the optimal partial path

metric among the metrics for all of the entering paths is chosen.

This is shown in [Wic, p. 296].

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 17'

&

$

%

The Complete Viterbi Algorithm (1)

Let the vertex corresponding to state Sj at time t be denoted Sj,t.

Each such vertex is assigned a value V (Sj,t) in the following way.

1. Set V (S0,0) = 0 and t = 1.

2. At time t, compute the partial path metrics for all paths

entering each vertex.

3. Set V (Sk,t) equal to the best partial path metric entering a

vertex corresponding to state Sk at time t. One best edge

survives (ties are randomly broken); the others are deleted

from the trellis.

4. If t < L + m, t := t + 1 and goto Step 2; otherwise Stop.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 18'

&

$

%

The Complete Viterbi Algorithm (2)

Once all vertex values have been computed, the vector y′ is

obtained by starting at state S0, time t = L + m and following the

surviving edges backward through the trellis.

Theorem 12-1. The path selected by the Viterbi decoder is the

maximum likelihood path.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 19'

&

$

%

Hard-Decision Decoding

In hard-decision decoding each received bit is examined and a

decision is made whether it represents a 0 or a 1. A binary

memoryless channel model is depicted in [Wic, Fig. 12-6]. If

p(0 | 1) = p(1 | 0), we have a binary symmetric channel (BSC).

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 20'

&

$

%

The Viterbi Algorithm for the BSC (1)

For the BSC we have p(0 | 1) = p(1 | 0) = p and

p(0 | 0) = p(1 | 1) = 1 − p. By letting a = (log2 p − log2(1 − p))−1

(which is negative when p < 1/2) and b = − log2(1 − p),

M(r
(j)
i | yi

(j)) =
1

log2 p − log2(1 − p)
[log2 p(r

(j)
i | yi

(j))−log2(1−p)],

and we get the following table.

M(r
(j)
i | y

(j)
i) r

(j)
i = 0 r

(j)
i = 1

y
(j)
i = 0 0 1

y
(j)
i = 1 1 0

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 21'

&

$

%

The Viterbi Algorithm for the BSC (2)

Since a < 0, we have a minimizing problem. For the BSC case, the

path metric is simply the Hamming distance!

To get a maximizing problem, we can instead choose

a = (log2(1 − p) − log2 p) and b = − log2 p; then we get the

following metric.

M(r
(j)
i | y

(j)
i) r

(j)
i = 0 r

(j)
i = 1

y
(j)
i = 0 1 0

y
(j)
i = 1 0 1

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 22'

&

$

%

Example: Viterbi Decoding for the BSC

When the encoder in [Wic, Fig. 12-1] is used, the sequence

x = (110101) results in the codeword

y = (111, 000, 001, 001, 111, 001, 111, 110).

Assume that when the word y is transmitted over a noisy channel,

the following word is received:

r = (101, 100, 001, 011, 111, 101, 111, 110).

In the expression of r, a bar over a bit indicates an error. Using the

second set of bit metrics for the BSC case, the result of the

decoding is shown in [Wic, Fig. 12-8]. Several ties occur during

decoding (for example, for S3 at times t = 3 and t = 5); however,

these have no impact on the path selected by the decoder.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 23'

&

$

%

Soft-Decision Decoding (1)

In soft-decision decoding the receiver takes advantage of side

information in a received bit. Instead of assigning a 0 or a 1, as in

hard-decision decoding, a more flexible approach is taken through

the use of multibit quantization (cf. fuzzy logic!).

Four or more decision regions are established, ranging from a strong

one to a strong zero.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 24'

&

$

%

Soft-Decision Decoding (2)

Let the transmitted bits {y
(j)
i } take the values ±1. The path

metric for the AWGN channel are then the inner product of the

received word and the codeword. The individual bit metrics are

M(r
(j)
i | y

(j)
i) = r

(j)
i y

(j)
i .

Maximization of the path metric is equivalent to finding the

codeword y that is closest to r in terms of Euclidean distance

(note: for the BSC, Hamming distance was considered).

In dealing with Euclidean distance and real numbers, finite

precision of digital computers will have an impact on the result. In

practice, however, this impact turns out to be negligible.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 25'

&

$

%

Discrete Symmetric Channels

The fact that the received signal can take more than two values is

modeled as a discrete symmetric channel. Such a channel with

four values for the received signal is depicted in [Wic, Fig. 12-10].

The four values are

0 strong 0,

0 weak 0,

1 weak 1, and

1 strong 1.

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 26'

&

$

%

Example: Soft-Decision Viterbi Decoding (1)

Decoding is performed almost exactly as in the hard-decision case,

the only difference being the increased number (and resolution) of

the bit metrics.

We consider the following conditional probabilities in

[Wic, Fig. 12-10].

p(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 0.50 0.32 0.13 0.05

y = 1 0.05 0.13 0.32 0.50

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 27'

&

$

%

Example: Soft-Decision Viterbi Decoding (2)

log2 p(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 −1.00 −1.64 −2.94 −4.32

y = 1 −4.32 −2.94 −1.64 −1.00

With M(r | y) = 1.5[log2 p(r | y) − log2(0.05)], we get the following

table.

M(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 5 4 2 0

y = 1 0 2 4 5

c©Patric Österg̊ard

S-72.3410 Convolutional Codes (2) 28'

&

$

%

Example: Soft-Decision Viterbi Decoding (3)

As in a previous example, assume that the word

y = (111, 000, 001, 001, 111, 001, 111, 110)

is transmitted, and that the received word is

r = (101, 100, 001, 011, 110, 110, 111, 110).

The soft-decoding trellis diagram and the result of the decoding are

shown in [Wic, Fig. 12-11].

c©Patric Österg̊ard

